<samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
<ul id="e4iaa"></ul>
<blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>

      CS 161代做、Java/Python程序代寫

      時間:2024-04-25  來源:  作者: 我要糾錯



      CS 161, Spring 2024: Homework 2
      Homework 2: NFAs and Regular Expressions
      0. (Ungraded exercise) We rushed/didn’t get to the exercises at the end of worksheet 3
      (copied below for convenience). Make sure you understand what is wrong with these
      proofs.
      (a) Here is a false statement with a bad proof. What is wrong with the proof?
      Theorem (Not actually true). Every binary language is regular.
      Proof. Let A be any language. Here is a DFA M:
      M q0
      0,1
      Note that any string in A is accepted by this DFA. Thus, this DFA recognizes A,
      so A is regular.
      (b) Here is a false statement with a bad proof. What is wrong with the proof?
      Theorem (Not actually true). The language A = {00, 11} is not regular.
      Proof. Here is a DFA M:
      M q0 q1
      0 1
      1
      0
      The string 11, which is in A, is not accepted by this DFA. Thus, the DFA M does
      not recognize A, so A is not regular.
      1. (10 points) Let L be the language of binary strings with at least two 0s or at least
      three 1s.
      (a) (5 points) Draw a state diagram for an NFA that recognizes L.
      (b) (5 points) Recall that an NFA is a 5-tuple N = (Q, Σ, δ, q0, F) for finite set of states
      Q, finite set of alphabet characters Σ, transition function δ : Q × Σε → P(Q),
      start state q0 ∈ Q, and accept states F ⊂ Q. Describe your NFA as a 5-tuple.
      2. (10 points) Prove the following theorem by generalizing the construction from Worksheet 6.
      Theorem. The set of regular languages are closed under concatenation.
      (c) Sara Krehbiel, Ray Li 1
      CS 161, Spring 2024: Homework 2
      That is, prove that, for any two regular languages A and B, the language A ◦ B =
      {ab : a ∈ A : b ∈ B} is regular.
      3. (5 points) Consider the NFA N = ({1, 2, 3}, {0, 1}, δ, 1, {3}) with δ as depicted below (this is the same one from Quiz 6). Give a regular expression for the language
      recognized by this NFA.
      N 1 2 3
      ε
      1
      0
      1 0
      4. (10 points) Find an NFA that recognizes the language of (0◦1)∗ ◦(0∪1) (the alphabet is
      Σ = {0, 1}). Include both a state diagram and a formal specification of your automaton
      as a 5-tuple.
      5. (10 points) Let A be the language of strings over Σ = {0, 1} from the first day of class:
      A = {1
      a01b01a+b
      : a, b ≥ 0}. Prove that A is not regular. (An informal interpretation
      of this result is: DFAs cannot add in unary) Hint: 1
      6. (15 points) We see in class on 4/15 how to convert any k-state NFA into an equivalent
      2
      k
      -state DFA. This problem shows that this exponential blowup in the number of states
      is necessary. Let A ⊂ {0, 1}
      ∗ be the set of all strings (of length at least 101) that have
      a 0 exactly 100 places from the right hand end. That is
      A = {w : |w| ≥ 101, w|w|−100 = 0}. (1)
      (a) (5 points) Draw the state diagram for an NFA with 101102 states that recognizes
      A. (You can use “· · · ” and don’t have to draw all 101102 states, as long as it’s
      clear what the states/transitions would be in the omitted states) [Ray: Update: I
      think you need 102 states. If you have 103 or 104 states, that’s fine.]
      (b) (10 points) Show that no DFA on less than 2100 states can recognize A. Hint:2
      1
      In this class, we learn several methods for proving a language A is regular: constructing a DFA recognizing A, constructing an NFA recognizing A, finding a regular expression for A. However, we only learn
      one method for proving a language is not regular. What is it?
      2Give a proof by contradiction and assume such a DFA exists. Apply pigeonhole to all 2100 strings of
      length 100 to get two strings x and y of length 100 that end up at the same state after digesting. Derive a
      contradiction by considering the strings xz and yz for some carefully chosen string z.
      (c) Sara Krehbiel, Ray Li 2

      請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

      標簽:

      掃一掃在手機打開當前頁
    • 上一篇:COMP2013代做、代寫Data Structures and Algorithms
    • 下一篇:代做COMP3211、Python/Java程序代寫
    • 無相關信息
      昆明生活資訊

      昆明圖文信息
      蝴蝶泉(4A)-大理旅游
      蝴蝶泉(4A)-大理旅游
      油炸竹蟲
      油炸竹蟲
      酸筍煮魚(雞)
      酸筍煮魚(雞)
      竹筒飯
      竹筒飯
      香茅草烤魚
      香茅草烤魚
      檸檬烤魚
      檸檬烤魚
      昆明西山國家級風景名勝區
      昆明西山國家級風景名勝區
      昆明旅游索道攻略
      昆明旅游索道攻略
    • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      主站蜘蛛池模板: 久久亚洲AV成人出白浆无码国产| 免费无码婬片aaa直播表情| 麻豆亚洲AV成人无码久久精品| 日韩乱码人妻无码中文视频| 日韩人妻无码精品专区| 在线观看无码AV网站永久免费| 丰满少妇人妻无码| 精品国产性色无码AV网站| 亚洲AV永久无码区成人网站| 久久美利坚合众国AV无码| 人妻夜夜添夜夜无码AV| 国产成人精品无码一区二区三区| 免费A级毛片无码A∨ | 无码av免费一区二区三区试看| 亚洲精品久久无码av片俺去也| 精品久久久久久无码中文字幕| 亚洲精品无码久久久久APP| 国产成人无码精品一区二区三区| 无码国模国产在线观看免费| 在线精品自偷自拍无码中文| 免费无码毛片一区二区APP| 久久无码专区国产精品s| 精品无码国产自产拍在线观看蜜| 无码视频免费一区二三区| 精品欧洲av无码一区二区| 久久午夜福利无码1000合集| 国产成人精品无码一区二区| 精品久久久久久无码人妻热| 精品人妻少妇嫩草AV无码专区| 国产精品无码制服丝袜| 国产精品亚洲专区无码牛牛 | 久久午夜无码鲁丝片直播午夜精品| 精品国产AV无码一区二区三区| 亚洲av永久无码| 无码人妻精品一区二区三区9厂| 高清无码午夜福利在线观看 | 亚洲AV无码一区东京热久久| 丰满日韩放荡少妇无码视频| 亚洲一区二区三区无码中文字幕| 国产成人无码AV一区二区在线观看| 亚洲人成无码网站久久99热国产|