精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

代做3 D printer materials estimation編程

時間:2024-02-21  來源:  作者: 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate 90% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a 90% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct 90% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a 1-row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫game of Bingo cards
  • 下一篇:代寫PLAN60722 – Urban Design Project
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      男女男精品视频网站| 中文字幕一区二区三区手机版 | 99在线小视频| 日韩欧美一级视频| 欧美卡一卡二卡三| 精品人妻伦九区久久aaa片| 国产高潮在线观看| ,亚洲人成毛片在线播放| 亚洲午夜久久久久久久久红桃| 欧美激情亚洲综合| 国产精品视频第一页| 91福利视频免费观看| 五月婷婷中文字幕| 天天操夜夜操很很操| 欧美第一页在线观看| 精品日韩久久久| 久久久国产一级片| 久久国产精品波多野结衣av| 精品无码人妻一区二区三 | 这里只有精品在线观看视频| 五月天婷婷激情网| 亚洲av综合色区无码一二三区| 五月婷婷狠狠干| 在线精品免费视| 亚洲国产精品久久久久久久| 伊人久久综合视频| 一级特黄aaa大片在线观看| 97久久久久久久| 国产精品黄色大片| 九九在线观看视频| 日韩一区二区三区在线观看视频| 香蕉av在线播放| 97伦伦午夜电影理伦片| 后入内射欧美99二区视频| 老熟妇高潮一区二区高清视频| 日韩精品1区2区| 亚洲资源在线播放| 国内偷拍精品视频| 天堂av在线8| 99热这里精品| 久久久久99精品成人| 天天干天天草天天| www.久久色| 美女一区二区三区视频| 午夜国产福利在线观看| www.热久久| 欧美日韩国产一二三区| 亚洲av成人片色在线观看高潮| 亚洲中文字幕在线观看| 精品人妻在线播放| 中文字幕有码视频| 国产成人黄色网址| 欧美一区二区三区观看| 亚洲网中文字幕| 老熟妇一区二区三区| 伊人久久成人网| 国产亚洲欧美日韩高清| 亚洲av色香蕉一区二区三区 | 亚洲熟女乱综合一区二区| 国产大片中文字幕| 熟妇高潮一区二区高潮| 国产成人在线综合| 五月婷婷在线播放| 国内精品久久99人妻无码| 亚洲成人福利在线观看| 国产伦精品一区二区免费| 天堂国产一区二区三区| 999精品免费视频| 日韩av手机在线免费观看| 国产99在线 | 亚洲| 日韩欧美国产成人精品免费| 丁香六月婷婷综合| 制服 丝袜 综合 日韩 欧美| 久久久久久久久久久影视| 91香蕉一区二区三区在线观看| 人妻久久一区二区| 国产黄色一区二区| 亚洲精品乱码久久久久久不卡| 久久综合亚洲色hezyo国产| www午夜视频| 中文字幕日韩久久| 色婷婷在线影院| 精品毛片一区二区三区| 波多野结衣一二三四区| 中文字幕一区二区三区四区欧美 | 手机毛片在线观看| 国产一区二区三区中文字幕| 91成人一区二区三区| 五月花丁香婷婷| 欧美成人aaaaⅴ片在线看| 国产视频aaa| 99久久免费国产精精品| 亚洲av熟女高潮一区二区| 久久综合加勒比| 国产麻豆91视频| av女人的天堂| 91成人在线免费| 一级二级三级视频| 中文字幕超碰在线| 一区二区三区麻豆| 午夜国产一区二区三区| 欧美在线视频第一页| 九九九国产视频| 国内精品福利视频| 国产午夜精品理论片在线| 国产精品欧美亚洲| 国产裸体无遮挡| 精品人妻少妇AV无码专区| 精品无码久久久久| 国内精品久久久久久久久久| 国产美女精品视频国产| 国产盗摄一区二区三区在线 | 91精品国产高清一区二区三蜜臀| 香蕉视频久久久| 一区二区xxx| 中文字幕永久视频| 亚洲欧美自偷自拍| av免费一区二区| 国产一级精品毛片| 久久精品一区二区三| 免费看污黄网站在线观看| 欧美日韩理论片| 漂亮人妻被黑人久久精品| 免费国产羞羞网站视频| 三级小视频在线观看| 午夜一区在线观看| 99免费在线视频| 九九热视频免费| 少妇人妻精品一区二区三区| 这里只有精品在线观看视频| 97久久久久久久| 黄色一级视频免费看| 四虎精品免费视频| 99热这里只有精品2| 国产字幕在线观看| 人妻体内射精一区二区三区| 无码人妻一区二区三区精品视频| 色婷婷av国产精品| 亚洲天堂男人av| 国产视频aaa| 免费在线观看国产精品| 天天色综合天天色| 久久久久久久久久毛片| 欧美精品欧美极品欧美激情| 中文字幕+乱码+中文| 91中文字幕在线视频| 国产性猛交╳xxx乱大交| 日韩视频中文字幕在线观看 | 九一精品久久久| 久久人人爽人人爽人人片av免费| 天堂中文视频在线| 国产精品久久久久久99| 日韩一级片免费看| 爱情岛论坛成人| 蜜桃av.com| 91一区二区视频| 欧美 日韩 国产 在线| 亚洲一区二区三区四区精品| 国产呦小j女精品视频| 亚洲av成人片色在线观看高潮 | 国产成人啪精品午夜在线观看 | 91亚洲欧美激情| 欧美一区二区三区网站| av最新在线观看| 人妻久久一区二区| 国产精品情侣呻吟对白视频| 日韩中文字幕综合| 国产精品老熟女一区二区 | 乱码一区二区三区| 亚洲黄色免费在线观看| 久久久精品视频网站| 99热这里只有精品1| 天天干天天干天天干天天| 国产偷人妻精品一区二区在线| 女教师高潮黄又色视频| 波多野结衣视频网址| 制服丝袜第二页| 欧美日韩人妻精品一区在线| 国产精品污视频| 亚洲少妇一区二区三区| 久久久99精品| 国产999久久久| 最近中文字幕av| 日韩一级在线播放| 久久亚洲AV无码| 国产天堂av在线| www.com.av| 91av久久久| 亚洲一区二区三区综合| 天天插天天操天天射| 日本美女一级视频| 久一区二区三区| 精品无码人妻一区| 黑人粗进入欧美aaaaa| 国产精品视频在| 成人免费一区二区三区| 91麻豆国产视频| 亚洲精品国产精品乱码| 亚洲h视频在线观看| 日韩高清一二三区|