精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

代做MATH1033、代寫c/c++,Java程序語言

時間:2024-05-11  來源:  作者: 我要糾錯



The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
SPRING SEMESTER 2023-2024
MATH1033 - STATISTICS
Your neat, clearly-legible solutions should be submitted electronically via the MATH1033 Moodle page by
18:00 on Wednesday 8th May 2024. Since this work is assessed, your submission must be entirely your
own work (see the University’s policy on Academic Misconduct). Submissions made more than one week
after the deadline date will receive a mark of zero. Please try to make your submission by the deadline.
General points about the coursework
1. Please use R Markdown to produce your report.
2. An R Markdown template file to get you started is available to download from Moodle. Do make use of
this, besides reading carefully the Hints and Tips section below.
3. Please submit your report a self-contained html file (i.e. as produced by R Markdown) or pdf.
4. If you have any queries about the coursework, please ask me by email (of course, please limit this to
requests for clarification; don’t ask for any of the solution nor post any of your own).
Your task
The data file scottishData.csv contains a sample of the ”Indicator” data that were used to compute the 2020
Scottish Index of Multiple Deprivation (SIMD), a tool used by government bodies to support policy-making. If
you are interested, you can see the SIMD and find out more about it here: https://simd.scot
Once you have downloaded the csv file, and once you’ve set the RStudio working directory to wherever you
put the file, you can load the data with dat <- read.csv(”scottishData.csv”) The file contains data for a sample
of 400 ”data zones” within Scotland. Data zones are small geographical areas in Scotland, of which there
are 6,976 in total, with each typically containing a population of between 500 and 1000 people. Of the 400
observations within the data file, 100 are from the Glasgow City, 100 are from City of Edinburgh, and 200
are from elsewhere in Scotland. Glasgow and Edinburgh are the two largest cities in Scotland by population.
Table 1 shows a description of the different variables within the data set.
Your report should have the following section headings: Summary, Introduction, Methods, Results, Conclusions.
For detailed guidance, read carefully section page 4 of the notes, and the ”How will the report be marked?”
section below.
The Results section of your report should include subsections per points 1-3 as follows. The bullet points
indicate what should be included within these subsections, along with suitable brief commentary.
MATH1033 Turn Over
2 MATH1010
1. A comparison of employment rate between Glasgow and Edinburgh.
• A single plot with side-by-side boxplots for the Employment_rate variable for each of
Glasgow and Edinburgh.
• A histogram of the Employment_rate variable with accompanying normal QQ plot, for
each of Glasgow and Edinburgh.
• Sample means and variances of the Employment_rate variable for the data zones in
each of Glasgow and Edinburgh.
• Test of whether there is a difference in variability of Employment_rate scores between
Glasgow and Edinburgh.
• Test of whether there is a difference in means of Employment_rate scores between
Glasgow and Edinburgh.
2. Investigation into how Employment_rate and other variables are associated.
• A matrix of pairwise scatterplots for the following variables: Employment_rate,
Attainment, Attendance, ALCOHOL, and Broadband. Also present pairwise correlation
coefficients between these variables.
• A regression of Employment_rate on Attendance, including a scatterplot showing a line
of best fit.
3. A further investigation into a respect of your choosing.
• It’s up to you what you choose here. Possible things you could consider are: considering
an analysis similar to 1 above, but involving the data on data zones outside of Glasgow
and Edinburgh; considering whether what you find in investigations in 2 above are
similar if you consider whether the data zones are from Glasgow, Edinburgh or elsewhere;
investigating the other variables in the data set besides these in 1 and 2.
• Note that some variables will be very strongly correlated, but with fairly obvious/boring
explanation: for example “rate” variables (see Table 1) are just “count” variables
divided by population size, and data zones are designed to have similar population
sizes.
• Think freely and creatively about what is interesting to investigate, especially how you
could make good use of the methods that you are learning in the module.
Please include as an appendix the R code to produce the results in your report, but don’t include
R code or unformatted text/numerical output in the main part of the report itself.
Hints and tips:
1. Use the template .Rmd file provided on Moodle as your starting point.
2. Read carefully “How will the report be marked?” below. Then re-read it again once again
just before you submit to make sure you have everything in place.
3. You may find the subset command useful. Some examples:
• glasgow <- subset(dat, Council_area == "Glasgow City") defines a new variable containing
data only for Glasgow.
• subset(dat, (Council_area != "City of Edinburgh" & Council_area != "Glasgow City"))
finds the data zones that are not in either Edinburgh or Glasgow.
4. The command names(dat) will tell you the names of the variables (columns) in dat.
5. dat(,c(16,17,18)) will pick out just the 16th, 17th, 18th column (for example).
MATH1010
[ ]
m
( ]
⑧m
3 MATH1010
6. The pairs() function produces a matrix of pairwise scatterplots. cor() computes pairwise
correlation coefficients.
7. Do make sure that figures have clear titles, axis labels, etc
MATH1010 Turn Over
.
4 MATH1010
How will the report be marked?
The marking criteria and approximate mark allocation are as follows:
Summary [4 marks] - have you explained (in non-technical language) (a) the aim of the analysis;
(b) (very briefly) the methods you have used; and (c) the key findings?
Introduction [5] - have you (a) explained the context, talked in a bit more detail about the aim;
(b) given some relevant background information; (c) described the available data; (d) explained
why the study is useful/important?
Methods [3] - have you described the statistical techniques you have used (in at least enough
detail that a fellow statistician can understand what you have done)?
Results [14, of which 7 are for the investigation of your choosing mentioned in point 3 above] -
have you presented suitable graphical/numerical summaries, tests and results, and interspersed
these with text giving explanation?
Conclusions [4] - have you (a) recapped your key findings, (b) discussed any limitations, and
(c) suggested possible further extensions of the work?
Presentation [10] - overall, does the report flow nicely, is the writing clear, and is the presentation
tidy (figures/tables well labelled and captioned)? Has Markdown been used well?
MATH1010
5 MATH1010
Table 1: A description of the different variables. “Standardised ratio” is such that a value of 100
is the Scotland average for a population with the same age and sex profile.
MATH1010 End

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



















 

標(biāo)簽:

掃一掃在手機打開當(dāng)前頁
  • 上一篇:COMP2017代寫、代做Python/Java程序
  • 下一篇:CMT219代寫、代做Java程序語言
  • 代做CSCI 2525、c/c++,Java程序語言代寫
  • COMP 315代寫、Java程序語言代做
  • 昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      欧美成人精品欧美一| 精品欧美在线观看| 亚洲精品午夜国产va久久成人| av免费观看不卡| 姝姝窝人体www聚色窝| 久艹视频在线观看| 北条麻妃一二三区| 一本在线免费视频| 又色又爽又黄18网站| 欧美精品欧美极品欧美激情| 国内精品国产成人国产三级| www.麻豆av| 91精品国产色综合久久不8| 欧美精品色哟哟| 好吊视频一二三区| 国产毛片久久久久久| 91插插插插插插| 亚洲一区二区三区黄色| 最近中文字幕一区二区| 亚洲 欧美 日韩 综合| 五月天婷婷丁香| 午夜视频www| 亚洲欧美高清在线| 97人妻精品一区二区三区免| 99久久国产免费| 超碰人人草人人| www久久久久久| 国产精品女同一区二区| 91亚洲精品国偷拍自产在线观看 | 一级黄色高清视频| 亚洲黄色在线免费观看| 亚洲一区二区色| 国产成人亚洲精品自产在线 | 四虎国产精品免费| 污视频在线免费观看| 中文字幕日韩第一页| 91精品无人成人www| 国产精品视频看看| 日本不卡一区视频| 亚洲欧美国产高清va在线播放| а天堂中文在线资源| 国产无遮挡又黄又爽又色| 国产亚洲色婷婷久久99精品91| 黄色激情视频在线观看| 欧美日韩综合在线观看| 中文字幕一区二区三区精品| 国产成人一区二区三区影院在线| 国产又大又黑又粗免费视频| 欧美色图亚洲视频| 在线观看日本中文字幕| 国产理论视频在线观看| 手机看片福利在线| 国产精品suv一区| 色呦色呦色精品| 99久久免费看精品国产一区| 久久久久久久久黄色| 中文字幕日韩一级| 精品欧美一区二区久久久久| 天堂网avav| 国产黄色大片免费看| 性猛交xxxx| 精品人妻aV中文字幕乱码色欲| 永久免费未满蜜桃| 久久久精品少妇| 亚洲视频在线观看一区二区三区| 国产一精品一aⅴ一免费| 天天操天天干天天爱| 国产sm调教视频| 网爆门在线观看| 精品欧美在线观看| 7799精品视频天天看| 欧美性猛交 xxxx| 国产精品久久久久久久久毛片 | 欧美天堂在线视频| 亚洲色图 在线视频| 蜜桃视频污在线观看| 懂色av蜜臀av粉嫩av永久| 天天视频天天爽| 久久久一二三区| 国产白嫩美女无套久久| 中文字幕 欧美 日韩| 欧美日韩理论片| 国产精品一级视频| 中文字幕精品无码亚| 日产欧产va高清| 精品亚洲一区二区三区四区| 中文字幕日本人妻久久久免费| 蜜桃视频污在线观看| 国产女人18毛片水真多18| 伊人五月天婷婷| 日韩免费观看一区二区| 久久国产免费观看| 国产美女精品久久| a天堂在线观看视频| 中文字幕在线日本| 亚洲 美腿 欧美 偷拍| 色偷偷男人天堂| 美女久久久久久久久| 九九热视频免费| 黄色aaa毛片| 国产三级在线观看完整版| 国产黄色片免费| 国产成人精品一区二三区四区五区 | 五月天激情婷婷| 久久久久久久久久久久久av| 国产精品久久久毛片| av网站免费播放| 91香蕉视频导航| 成人免费区一区二区三区| www.亚洲黄色| 国产九九在线视频| 国产在线一二区| 久久久无码一区二区三区| 久久久无码一区二区三区| 国产在线a视频| 久久久国产精品久久久| 欧美三级 欧美一级| 天天色天天干天天色| 婷婷激情四射网| 一区二区三区在线观看免费视频| 亚洲黄色a级片| 成人精品在线观看视频| 狠狠躁日日躁夜夜躁av| 欧美日韩人妻精品一区二区三区| 日韩欧美三级视频| 亚洲高清在线不卡| www日本在线| 久久久久成人网站| 日韩欧美一区二区一幕| 午夜黄色福利视频| 99视频免费看| 久久午夜福利电影| 色www免费视频| 中文字幕在线日亚洲9| 东京热av一区| 嫩草影院国产精品| 中文字幕在线播放av| 国产精品999.| 久久中文字幕无码| 中文字幕成人免费视频| 国产福利在线免费| 日韩欧美不卡视频| jlzzjlzzjlzz亚洲人| 男人的天堂官网| 亚洲精品第五页| 国产毛片欧美毛片久久久| 欧美三级理论片| 91狠狠综合久久久久久| 九九热免费精品视频| 中文字幕你懂的| 久久久精品少妇| 亚洲精品国产手机| 九九九国产视频| 91精品国产综合久| 日韩大片一区二区| 国产第一页第二页| 亚洲AV无码成人精品区东京热 | 欧美一级特黄高清视频| 亚洲日本国产精品| 欧美精品aaaa| 国产精品人人爽| 亚洲国产精品18久久久久久| 久久精品无码专区| 成人av手机在线| 亚洲成人手机在线观看| 国产裸体永久免费无遮挡| 天天操天天舔天天射| www.色欧美| 亚洲第一天堂影院| 久久精品美女视频| xxx中文字幕| 手机看片福利在线| 久草视频在线资源| 99久久精品国产一区色| 日韩人妻精品中文字幕| 国产毛片一区二区三区va在线| 亚洲美女在线播放| 日日噜噜噜噜人人爽亚洲精品| 国产精品99精品| 亚洲男人天堂网址| 天天综合永久入口| 欧美激情亚洲综合| 久久久久久久久久久久久久免费看| 高清一区二区视频| 91麻豆免费视频网站| 中文字幕久久熟女蜜桃| 天天插天天操天天射| 人妻精品久久久久中文 | 亚洲精品毛片一区二区三区 | 天堂网avav| 免费日韩一级片| 久久久久久综合网| 精品人妻一区二区三区日产乱码| 成人一级黄色大片| 草草视频在线播放| 国产二级一片内射视频播放| 波多野结衣亚洲一区二区| 999福利视频| 99久久精品国产一区色| 999久久久精品视频|