精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

代做COCMP5328、代寫Python設計程序

時間:2024-05-07  來源:  作者: 我要糾錯



COCMP5328 - Advanced Machine Learning 
Assignment 1 
This assignment is to be completed in groups of 2 to 3 students. It is worth 25% of your 
total mark. 
1 Objective 
The objective of this assignment is to implement Non-negative Matrix Factorization 
(NMF) algorithms and analyze the robustness of NMF algorithms when the dataset is 
contaminated by large magnitude noise or corruption. More specifically, you should 
implement at least two NMF algorithms and compare their robustness. 
2 Instructions 
2.1 Dataset description 
In this assignment, you need to apply NMF algorithms on two real-world face image 
datasets: (1) ORL dataset
1; (2) Extended YaleB dataset
2

• ORL dataset: it contains 400 images of 40 distinct subjects (i.e., 10 images per 
subject). For some subjects, the images were taken at different times, varying the 
lighting, facial expressions, and facial details (glasses / no glasses). All the images 
were taken against a dark homogeneous background with the subjects in an 
upright, frontal position. All images are cropped and resized to 92×112 pixels. 
• Extended YaleB dataset: it contains 2414 images of 38 subjects under 9 poses 
and 64 illumination conditions. All images are manually aligned, cropped, and 
then resized to 168×192 pixels. 
 
     1    https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html    
2    http://vision.ucsd.edu/    iskwak/ExtYaleDatabase/ExtYaleB.html    2    
Figure 1: An example face image and its occluded versions by b × b-blocks with b = 
10,12, and 14 pixels. 
Note: we provide a tutorial for this assignment, which contains example code for 
loading a dataset to numpy array. Please find more details in assignment1.ipynb. 
2.2 Assignment tasks 
1. You need to implement at least two Non-negative Matrix Factorization (NMF) 
algorithms: 
• You should implement at least two NMF algorithms with at least one not 
taught in this course (e.g., L1-Norm Based NMF, Hypersurface Cost Based 
NMF, L1-Norm Regularized Robust NMF, and L2,1-Norm Based NMF). 
• For each algorithm, you need to describe the definition of cost function as 
well as the optimization methods used in your implementation. 
2. You need to analyze the robustness of each algorithm on two datasets: 
• You are allowed to design your own data pre-processing method (if 
necessary). 
• You need to use a block-occlusion noise similar to those shown in Figure 1. 
The noise is generated by setting the pixel values to be 255 in the block. You 
should design your own value for b (not necessary to be 10,12 or 14). You 
are also encouraged to design your own noise other than the block-occlusion 
noise. 
• You need to demonstrate each type of noise used in your experiment (show 
the original image as well as the image contaminated by noise). 
• You should carefully choose the NMF algorithms and design experiment 
settings to clearly show the different robustness of the algorithms you have 
implemented. 
3. You are only allowed to use the python standard library, numpy and scipy (if 
necessary) to implement NMF algorithms. 3    
2.3 Programming and External Libraries Python
This assignment is required to be finished by 3. When you implement NMF 
algorithms, you are not allowed to use external libraries which contains NMF 
implementations, such as scikit-learn, and Nimfa (i.e., you have to implement the NMF 
algorithms by yourself). You are allowed to use scikit-learn for evaluation only (please 
find more details in assignment1.ipynb). If you have any ambiguity whether you can 
use a particular library or a function, please post on canvas under the Assignment 1 
thread. 
2.4 Evaluate metrics 
To compare the performance and robustness of different NMF algorithms, we provide 
three evaluation metrics: (1) Root Means Square Errors; (2) Average Accuracy; (3) 
Normalized Mutual Information. For all experiments, you need to use at least two 
metrics, i.e., Root Means Square Errors and Average Accuracy. 
• Root Means Square Errors (RMSE): let X denote the contaminated dataset (by 
adding noise), and      ̂ denote the clean dataset. Let   and   denote the 
factorization results on      ̂ , the Root Means Square Errors then can be defined 
as follows: 
(1) 
• Average Accuracy: You need to perform some clustering algorithms (i.e., Kmeans)
with num clusters equal to num classes. Each example is assigned with 
the cluster label (please find more details in assignment1.ipynb). Lastly, you can 
evaluate the accuracy of predictions Ypred as follows: 
 (3) 
where I(·,·) is mutual information and H(·) is entropy. 
Note: we expect you to have a rigorous performance evaluation. To provide an estimate 
of the performance of the algorithms in the report, you can repeat multiple times (e.g., 
5 times) for each experiment by randomly sampling 90% data from the whole dataset 
and average the metrics on different subset. You are also required to report the standard 
deviations. 4    
3 Report 
The report should be organized like research papers, and should contain the following 
sections: 
• In abstract, you should briefly introduce the topic of this assignment and describe 
the organization of your report. 
• In introduction, you should first introduce the main idea of NMF as well as its 
applications. You should then give an overview of the methods you want to use. 
• In related work, you are expected to review the main idea of related NMF 
algorithms (including their advantages and disadvantages). 
• In methods, you should describe the details of your method (including the 
definition of cost functions as well as optimization steps). You should also 
describe your choices of noise and you are encouraged to explain the robustness 
of each algorithm from theoretical view. 
• In experiment, firstly, you should introduce the experimental setup (e.g., datasets, 
algorithms, and noise used in your experiment for comparison). 
Second, you should show the experimental results and give some comments. 
• In conclusion, you should summarize your results and discuss your insights for 
future work. 
• In reference, you should list all references cited in your report and formatted all 
references in a consistent way. 
The layout of the report: 
• Font: Times New Roman; Title: font size 14; Body: font size 12 
• Length: Ideally 10 to 15 pages - maximum 20 pages 
Note: You are encouraged to use LaTeX. Optionally, a MS-Word template is provided. 
4 Submissions 
The submission contains two parts: source code and report. Detailed instructions are 
as follows: 
1. Go to Canvas and upload the following files. 5    
1. report (a pdf file): the report should include each member’s details 
(student id and name). 
2. code (a folder) as zip file 
i. algorithm (a sub-folder): your code could be multiple files inside 
algorithm sub-folder. 
ii. data (an empty sub-folder): although two datasets should be inside the 
data folder, please do not include them in the zip file. We will copy two 
datasets to the data folder when we test the code. 
2. Only one student needs to submit the report as pdf file and code as zip file which 
must be named as student ID numbers of all group members separated by 
underscores. 
E.g., “xxxxx_xxxxx_xxxxx_code.zip and xxxxx_xxxxx_xxxxx_report.pdf”. 
3. Your submission should include the report and the code. A plagiarism checker 
will be used. 
4. You need to clearly provide instructions on how to run your code in the appendix 
of the report. 
5. Indicate the contribution of each group member. 
6. A penalty of minus 1.25 (5%) marks per each day after due (email late 
submissions to TA and confirm late submission dates with TA). Maximum delay 
is 5 days, Assignments more than 5 days late will get 0. 
 
5 Plagiarism 
• Please read the University Policy on Academic Honesty carefully: 
http://sydney.edu.au/elearning/student/EI/academic_honesty.shtml 
• All cases of academic dishonesty and plagiarism will be investigated. 
• There is a new process and a centralised University system and database. 
• Three types of offences: 
1. Plagiarism – When you copy from another student, website or other 
source. This includes copying the whole assignment or only a part of it. 
2. Academic Dishonesty – When you make your work available to another 
student to copy (the whole assignment or a part of it). There are other 
examples of academic dishonesty. 6    
3. Misconduct - When you engage another person to complete your 
assignment (or a part of it), for payment or not. This is a very serious 
matter, and the Policy requires that your case is forwarded to the 
University Registrar for investigation. 
• The penalties are severe and include: 
1. A permanent record of academic dishonesty, plagiarism, and misconduct 
in the University database and on your student file. 
2. Mark deduction, ranging from 0 for the assignment to Fail for the course. 
3. Expulsion from the University and cancelling of your student visa. 
• When there is copying between students, note that both students are penalised – 
the student who copies and the student who makes his/her work available for 
copying. 
• It is noted that only 30% (including references) is acceptable. The high 
plagiarism will be reported to the school. 
 
 7    
6 Marking scheme 
Category Criterion Marks Comments 
Report [20] Abstract [0.75] 
•Problem, methods, organization. 
Introduction [1.25] 
•What is the problem you intend to solve? 
•Why is this problem important? 
Previous work [1.5] 
•Previous relevant methods used in literature? 
Methods [6.25] 
•Pre-processing (if any) •NMF 
Algorithm’s formulation. 
•Noise choice and description. 
Experiments and Discussions [6.25] 
•Experiments, comparisons, and evaluation 
•Extensive analysis and discussion of results 
•Relevant personal reflection 
Conclusions and Future work [0.75] 
•Meaningful conclusions based on results 
•Meaningful future work suggested 
Presentation [1.25] 
•Grammatical sentences, no spelling mistakes 
•Good structure and layout, consistent 
formatting 
•Appropriate citation and referencing 
•Use graphs and tables to summarize data 
Other [2] 
•At the discretion of the marker: for impressing 
the marker, excelling expectation, etc. 
Examples include clear presentation, welldesigned
experiment, fast code, etc. 
 8    
Code [5] 
•Code runs within a feasible time 
•Well organized, commented and documented 
 
Penalties [−] 
•Badly written code: [−5] 
•Not including instructions on how to run your 
code: [−5] 
 
Note: Marks for each category is indicated in square brackets. The minimum mark for the assignment will be 0 (zero). 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp























 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP4403、代做Java編程語言
  • 下一篇:COMP1212代寫、代做Java/c++程序設計
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      粉嫩aⅴ一区二区三区| 国精品无码人妻一区二区三区| 日本午夜视频在线观看| 一级做a爱片久久毛片| 久久免费激情视频| 韩国av中文字幕| 凹凸精品一区二区三区| 中文字幕电影av| 日本黄色一区二区三区| 久久99久久98精品免观看软件| 国产传媒免费观看| 国产女人爽到高潮a毛片| av网站免费大全| av中文字幕免费观看| 91日韩视频在线观看| 亚洲三级中文字幕| 亚洲精品视频久久久| 少妇网站在线观看| 人人妻人人爽人人澡人人精品| 国产午夜精品久久久久久久久| av噜噜在线观看| 懂色av一区二区三区四区| 91女人18毛片水多国产| 亚洲免费视频二区| 中文字幕乱码人妻二区三区| 在线观看国产亚洲| 亚洲国产精品成人久久蜜臀| 亚洲精品字幕在线观看| 亚洲欧美偷拍另类| 亚洲日本国产精品| www日韩在线| 国产黄色片网站| 国产精品九九视频| 黄色aaa视频| 麻豆精品一区二区三区视频| 日韩无码精品一区二区| 五月婷在线视频| 99精品视频在线播放免费| 超碰人人人人人人人| 国产精品久久久久久久久毛片 | 久久国产一级片| 国产又大又黄又粗的视频| 久久久久久久黄色片| 久久精品www人人爽人人| 国产人成视频在线观看| 国产成人av一区二区三区不卡| 国产一级中文字幕| 欧美大片xxxx| 中文字幕av无码一区二区三区| 一级片久久久久| 超碰97人人干| 欧美 日韩 国产 成人 在线 91| 香蕉久久久久久久| 国产51自产区| 日日夜夜精品免费| 成人av网站在线播放| 九九热这里有精品视频| 亚洲第一页视频| 国产网站无遮挡| 日韩欧美成人一区二区三区| 亚洲精品视频网址| 久久久久久亚洲中文字幕无码 | 五月天中文字幕| www.日本高清| 久久夜色精品亚洲| 亚洲图片综合网| 蜜臀精品一区二区三区| 中字幕一区二区三区乱码| 激情五月婷婷久久| 91av免费观看| 九九热国产视频| 一级欧美一级日韩片| 久久久久中文字幕亚洲精品| 亚洲成av人片在线观看无| 黄色av网址在线观看| 亚洲精品911| 人妻人人澡人人添人人爽| 69精品久久久| 男人的天堂a在线| 国产5g成人5g天天爽| 性无码专区无码| 久久人人爽人人片| 亚洲精品视频专区| 人妻无码一区二区三区| 国产白嫩美女无套久久| 亚洲精品久久久久久国| 国产午夜精品久久久久久久久| 中文字幕在线导航| 欧美大片久久久| 成人在线手机视频| 亚洲精品www久久久久久| 毛片aaaaaa| 精品人妻一区二区三区免费看| 亚洲一区在线不卡| 一区二区视频在线免费观看| 欧美在线观看不卡| 免费人成年激情视频在线观看| 国产这里有精品| 国产深喉视频一区二区| 国产精品99re| 国产视频1区2区| 国产成人av免费| 国产乱女淫av麻豆国产| 成人在线观看一区二区| 99精品全国免费观看| a天堂视频在线观看| 99视频只有精品| 成人午夜福利一区二区| 丰满熟女一区二区三区| 国产精品111| 黄色在线观看av| 久久亚洲国产成人精品性色| 免费观看日批视频| 日韩a一级欧美一级| 青青草免费av| 亚洲 小说区 图片区| 天天天天天天天天操| 无码人妻精品一区二区三区蜜桃91| 五十路在线视频| 亚洲一级视频在线观看| 中文字幕人妻一区二区三区视频| www.成年人| 国产成人三级一区二区在线观看一| 国产乱码在线观看| 国产毛片毛片毛片毛片毛片| 国产精品国产三级国产专业不| 不卡的在线视频| 精品人妻少妇嫩草av无码| 精品人妻一区二区乱码 | 人妻中文字幕一区| 色窝窝无码一区二区三区| 亚洲av人无码激艳猛片服务器 | 亚洲精品乱码久久久久久不卡| 亚洲自拍一区在线观看| 超碰在线观看99| 加勒比在线一区| 日韩精品电影一区二区| 亚洲黄色片免费| 国产午夜小视频| 日韩一区免费视频| 91极品尤物在线播放国产| 国产乱码久久久| 日韩在线观看视频一区| 亚洲AV成人无码网站天堂久久| www.激情五月| 欧美色图亚洲激情| 亚洲在线精品视频| 九九热在线视频播放| 在线观看国产黄| 国产在线成人精品午夜| 四虎精品永久在线| 国产精品99精品| 亚洲 国产 欧美 日韩| 国产77777| 三级全黄做爰视频| 成人爽a毛片一区二区| 色一情一交一乱一区二区三区| 91成人福利视频| 国产主播在线观看| 亚洲xxxx天美| 久久久精品视频免费观看| 四季av综合网站| 黄色aaa视频| 亚洲少妇久久久| 欧美日韩精品一区二区三区视频播放| 最近中文字幕av| 精品人伦一区二区三电影| 亚洲免费不卡视频| 日本免费一区视频| 国产成人精品亚洲| 亚洲a视频在线观看| 久久精品亚洲a| mm131亚洲精品| 一区二区乱子伦在线播放| 精品欧美一区二区精品少妇| 亚洲精品女人久久久| 日韩欧美色视频| 久国产精品视频| 成人午夜福利视频| 亚洲精品成av人片天堂无码| 日韩一级在线视频| 欧美日韩国产精品一区二区三区| 国产99在线 | 亚洲| 亚洲一区二区蜜桃| 中文字幕精品一区二| 色婷婷久久综合中文久久蜜桃av| 国产精品视频免费播放| 91香蕉在线视频| 亚洲二区在线播放| 日韩色图在线观看| 乱子伦一区二区三区| 精品人妻伦一二三区久| 国产一级视频在线| 国产精品天天干| www.亚洲自拍| 超碰免费在线97| 国产福利精品一区二区三区| 亚洲熟妇av乱码在线观看| 中文av字幕在线观看| 亚欧洲精品视频|