精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

代做COCMP5328、代寫Python設(shè)計(jì)程序

時(shí)間:2024-05-07  來源:  作者: 我要糾錯(cuò)



COCMP5328 - Advanced Machine Learning 
Assignment 1 
This assignment is to be completed in groups of 2 to 3 students. It is worth 25% of your 
total mark. 
1 Objective 
The objective of this assignment is to implement Non-negative Matrix Factorization 
(NMF) algorithms and analyze the robustness of NMF algorithms when the dataset is 
contaminated by large magnitude noise or corruption. More specifically, you should 
implement at least two NMF algorithms and compare their robustness. 
2 Instructions 
2.1 Dataset description 
In this assignment, you need to apply NMF algorithms on two real-world face image 
datasets: (1) ORL dataset
1; (2) Extended YaleB dataset
2

• ORL dataset: it contains 400 images of 40 distinct subjects (i.e., 10 images per 
subject). For some subjects, the images were taken at different times, varying the 
lighting, facial expressions, and facial details (glasses / no glasses). All the images 
were taken against a dark homogeneous background with the subjects in an 
upright, frontal position. All images are cropped and resized to 92×112 pixels. 
• Extended YaleB dataset: it contains 2414 images of 38 subjects under 9 poses 
and 64 illumination conditions. All images are manually aligned, cropped, and 
then resized to 168×192 pixels. 
 
     1    https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html    
2    http://vision.ucsd.edu/    iskwak/ExtYaleDatabase/ExtYaleB.html    2    
Figure 1: An example face image and its occluded versions by b × b-blocks with b = 
10,12, and 14 pixels. 
Note: we provide a tutorial for this assignment, which contains example code for 
loading a dataset to numpy array. Please find more details in assignment1.ipynb. 
2.2 Assignment tasks 
1. You need to implement at least two Non-negative Matrix Factorization (NMF) 
algorithms: 
• You should implement at least two NMF algorithms with at least one not 
taught in this course (e.g., L1-Norm Based NMF, Hypersurface Cost Based 
NMF, L1-Norm Regularized Robust NMF, and L2,1-Norm Based NMF). 
• For each algorithm, you need to describe the definition of cost function as 
well as the optimization methods used in your implementation. 
2. You need to analyze the robustness of each algorithm on two datasets: 
• You are allowed to design your own data pre-processing method (if 
necessary). 
• You need to use a block-occlusion noise similar to those shown in Figure 1. 
The noise is generated by setting the pixel values to be 255 in the block. You 
should design your own value for b (not necessary to be 10,12 or 14). You 
are also encouraged to design your own noise other than the block-occlusion 
noise. 
• You need to demonstrate each type of noise used in your experiment (show 
the original image as well as the image contaminated by noise). 
• You should carefully choose the NMF algorithms and design experiment 
settings to clearly show the different robustness of the algorithms you have 
implemented. 
3. You are only allowed to use the python standard library, numpy and scipy (if 
necessary) to implement NMF algorithms. 3    
2.3 Programming and External Libraries Python
This assignment is required to be finished by 3. When you implement NMF 
algorithms, you are not allowed to use external libraries which contains NMF 
implementations, such as scikit-learn, and Nimfa (i.e., you have to implement the NMF 
algorithms by yourself). You are allowed to use scikit-learn for evaluation only (please 
find more details in assignment1.ipynb). If you have any ambiguity whether you can 
use a particular library or a function, please post on canvas under the Assignment 1 
thread. 
2.4 Evaluate metrics 
To compare the performance and robustness of different NMF algorithms, we provide 
three evaluation metrics: (1) Root Means Square Errors; (2) Average Accuracy; (3) 
Normalized Mutual Information. For all experiments, you need to use at least two 
metrics, i.e., Root Means Square Errors and Average Accuracy. 
• Root Means Square Errors (RMSE): let X denote the contaminated dataset (by 
adding noise), and      ̂ denote the clean dataset. Let   and   denote the 
factorization results on      ̂ , the Root Means Square Errors then can be defined 
as follows: 
(1) 
• Average Accuracy: You need to perform some clustering algorithms (i.e., Kmeans)
with num clusters equal to num classes. Each example is assigned with 
the cluster label (please find more details in assignment1.ipynb). Lastly, you can 
evaluate the accuracy of predictions Ypred as follows: 
 (3) 
where I(·,·) is mutual information and H(·) is entropy. 
Note: we expect you to have a rigorous performance evaluation. To provide an estimate 
of the performance of the algorithms in the report, you can repeat multiple times (e.g., 
5 times) for each experiment by randomly sampling 90% data from the whole dataset 
and average the metrics on different subset. You are also required to report the standard 
deviations. 4    
3 Report 
The report should be organized like research papers, and should contain the following 
sections: 
• In abstract, you should briefly introduce the topic of this assignment and describe 
the organization of your report. 
• In introduction, you should first introduce the main idea of NMF as well as its 
applications. You should then give an overview of the methods you want to use. 
• In related work, you are expected to review the main idea of related NMF 
algorithms (including their advantages and disadvantages). 
• In methods, you should describe the details of your method (including the 
definition of cost functions as well as optimization steps). You should also 
describe your choices of noise and you are encouraged to explain the robustness 
of each algorithm from theoretical view. 
• In experiment, firstly, you should introduce the experimental setup (e.g., datasets, 
algorithms, and noise used in your experiment for comparison). 
Second, you should show the experimental results and give some comments. 
• In conclusion, you should summarize your results and discuss your insights for 
future work. 
• In reference, you should list all references cited in your report and formatted all 
references in a consistent way. 
The layout of the report: 
• Font: Times New Roman; Title: font size 14; Body: font size 12 
• Length: Ideally 10 to 15 pages - maximum 20 pages 
Note: You are encouraged to use LaTeX. Optionally, a MS-Word template is provided. 
4 Submissions 
The submission contains two parts: source code and report. Detailed instructions are 
as follows: 
1. Go to Canvas and upload the following files. 5    
1. report (a pdf file): the report should include each member’s details 
(student id and name). 
2. code (a folder) as zip file 
i. algorithm (a sub-folder): your code could be multiple files inside 
algorithm sub-folder. 
ii. data (an empty sub-folder): although two datasets should be inside the 
data folder, please do not include them in the zip file. We will copy two 
datasets to the data folder when we test the code. 
2. Only one student needs to submit the report as pdf file and code as zip file which 
must be named as student ID numbers of all group members separated by 
underscores. 
E.g., “xxxxx_xxxxx_xxxxx_code.zip and xxxxx_xxxxx_xxxxx_report.pdf”. 
3. Your submission should include the report and the code. A plagiarism checker 
will be used. 
4. You need to clearly provide instructions on how to run your code in the appendix 
of the report. 
5. Indicate the contribution of each group member. 
6. A penalty of minus 1.25 (5%) marks per each day after due (email late 
submissions to TA and confirm late submission dates with TA). Maximum delay 
is 5 days, Assignments more than 5 days late will get 0. 
 
5 Plagiarism 
• Please read the University Policy on Academic Honesty carefully: 
http://sydney.edu.au/elearning/student/EI/academic_honesty.shtml 
• All cases of academic dishonesty and plagiarism will be investigated. 
• There is a new process and a centralised University system and database. 
• Three types of offences: 
1. Plagiarism – When you copy from another student, website or other 
source. This includes copying the whole assignment or only a part of it. 
2. Academic Dishonesty – When you make your work available to another 
student to copy (the whole assignment or a part of it). There are other 
examples of academic dishonesty. 6    
3. Misconduct - When you engage another person to complete your 
assignment (or a part of it), for payment or not. This is a very serious 
matter, and the Policy requires that your case is forwarded to the 
University Registrar for investigation. 
• The penalties are severe and include: 
1. A permanent record of academic dishonesty, plagiarism, and misconduct 
in the University database and on your student file. 
2. Mark deduction, ranging from 0 for the assignment to Fail for the course. 
3. Expulsion from the University and cancelling of your student visa. 
• When there is copying between students, note that both students are penalised – 
the student who copies and the student who makes his/her work available for 
copying. 
• It is noted that only 30% (including references) is acceptable. The high 
plagiarism will be reported to the school. 
 
 7    
6 Marking scheme 
Category Criterion Marks Comments 
Report [20] Abstract [0.75] 
•Problem, methods, organization. 
Introduction [1.25] 
•What is the problem you intend to solve? 
•Why is this problem important? 
Previous work [1.5] 
•Previous relevant methods used in literature? 
Methods [6.25] 
•Pre-processing (if any) •NMF 
Algorithm’s formulation. 
•Noise choice and description. 
Experiments and Discussions [6.25] 
•Experiments, comparisons, and evaluation 
•Extensive analysis and discussion of results 
•Relevant personal reflection 
Conclusions and Future work [0.75] 
•Meaningful conclusions based on results 
•Meaningful future work suggested 
Presentation [1.25] 
•Grammatical sentences, no spelling mistakes 
•Good structure and layout, consistent 
formatting 
•Appropriate citation and referencing 
•Use graphs and tables to summarize data 
Other [2] 
•At the discretion of the marker: for impressing 
the marker, excelling expectation, etc. 
Examples include clear presentation, welldesigned
experiment, fast code, etc. 
 8    
Code [5] 
•Code runs within a feasible time 
•Well organized, commented and documented 
 
Penalties [−] 
•Badly written code: [−5] 
•Not including instructions on how to run your 
code: [−5] 
 
Note: Marks for each category is indicated in square brackets. The minimum mark for the assignment will be 0 (zero). 

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp























 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫COMP4403、代做Java編程語言
  • 下一篇:COMP1212代寫、代做Java/c++程序設(shè)計(jì)
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級(jí)風(fēng)景名勝區(qū)
    昆明西山國家級(jí)風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗(yàn)證碼平臺(tái) 理財(cái) WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      美女www一区二区| 婷婷亚洲久悠悠色悠在线播放| 欧美亚洲国产一区二区三区va| 高清不卡一区二区| 国产精品一区二区男女羞羞无遮挡| 男男视频亚洲欧美| 久久成人免费电影| 精品一区二区影视| 国产成人精品综合在线观看 | 欧美视频中文字幕| 欧美视频一区二区| 欧美性猛片xxxx免费看久爱 | 麻豆精品一区二区综合av| 欧美96一区二区免费视频| 麻豆精品一区二区| 国产91精品在线观看| 成人动漫一区二区在线| 91高清在线观看| 欧美日韩不卡视频| 欧美精品一区二区在线播放| 久久精品夜色噜噜亚洲aⅴ| 欧美高清一级片在线观看| 亚洲色欲色欲www| 午夜成人免费视频| 国精产品一区一区三区mba桃花| 国产成人av一区二区三区在线 | 国产三级精品在线| 日韩毛片高清在线播放| 午夜精品视频在线观看| 国产精品正在播放| 欧美性高清videossexo| 久久品道一品道久久精品| 一区二区三区中文在线| 国产原创一区二区三区| 欧美性一区二区| 日本一区二区动态图| 婷婷一区二区三区| 97精品电影院| 久久先锋影音av| 婷婷成人激情在线网| 成人app下载| 欧美一级国产精品| 一区二区成人在线观看| 国产成人免费在线观看| 欧美日韩国产另类不卡| 亚洲视频资源在线| 国产一区二区三区视频在线播放| 日本韩国一区二区三区| 国产欧美日韩三区| 六月丁香婷婷久久| 欧美日韩亚洲不卡| 亚洲激情自拍视频| 不卡的av网站| 国产欧美一区二区三区在线看蜜臀 | 一区二区不卡在线视频 午夜欧美不卡在| 日本亚洲欧美天堂免费| 一本色道久久加勒比精品| 国产女同性恋一区二区| 精久久久久久久久久久| 91麻豆精品国产91久久久使用方法 | 国产性做久久久久久| 免费成人在线观看| 欧美日韩国产影片| 一区二区三区精品视频在线| aaa亚洲精品| 国产精品无码永久免费888| 久久精品国产99国产精品| 在线91免费看| 日韩成人一级大片| 日韩欧美一区中文| 日韩电影免费在线观看网站| 欧美乱妇20p| 日韩精品电影在线| 日韩欧美精品在线| 久久99精品久久久| 国产视频一区不卡| 粉嫩久久99精品久久久久久夜| 久久久美女毛片| 国产成人99久久亚洲综合精品| 久久精品视频网| 国产精品一二二区| 国产精品麻豆欧美日韩ww| av激情亚洲男人天堂| 亚洲精品成人天堂一二三| 在线免费精品视频| 天堂成人国产精品一区| 日韩天堂在线观看| 国产成人av在线影院| 成人欧美一区二区三区黑人麻豆| 91亚洲精品乱码久久久久久蜜桃| 亚洲男同1069视频| 欧美久久久久中文字幕| 美女视频黄久久| 国产精品女人毛片| 欧美性一区二区| 精品亚洲成a人在线观看| 日本一区二区三区高清不卡| 91丨九色丨尤物| 日韩电影在线观看电影| 久久久久国产一区二区三区四区| 国产电影精品久久禁18| 亚洲精品午夜久久久| 日韩免费在线观看| 91蝌蚪porny| 久久99精品视频| 亚洲欧美日韩综合aⅴ视频| 91麻豆精品国产91久久久久久| 激情综合色播五月| 一区二区理论电影在线观看| 日韩欧美国产午夜精品| 色一区在线观看| 国产在线不卡一区| 舔着乳尖日韩一区| 中文字幕在线观看一区| 精品国产乱码久久| 在线观看亚洲一区| 懂色中文一区二区在线播放| 视频一区二区三区入口| 亚洲天堂精品在线观看| 久久综合九色综合97婷婷女人| 色狠狠综合天天综合综合| 国产一级精品在线| 日本美女一区二区三区| 一区二区三区精品视频在线| 久久精品视频免费| 2024国产精品| 欧美一区二区精品久久911| 91久久精品网| 成人av中文字幕| 国产在线精品一区二区夜色| 香蕉成人啪国产精品视频综合网| 久久精品欧美日韩| 精品卡一卡二卡三卡四在线| 欧美三级电影网站| 欧美中文字幕一区| 99精品视频在线免费观看| 国产成人av电影免费在线观看| 久久激情综合网| 日韩二区三区在线观看| 亚洲成人免费影院| 亚洲国产日韩a在线播放| 一区二区在线免费| 亚洲精品国久久99热| 一区二区中文字幕在线| 中文字幕中文在线不卡住| 国产亚洲欧美日韩日本| 国产欧美日韩综合| 国产视频一区在线观看 | 亚洲午夜私人影院| 一区二区三区电影在线播| 亚洲欧美激情视频在线观看一区二区三区| 精品久久久久久最新网址| 日韩一区二区三区在线视频| 91精品国产一区二区| 日韩欧美国产综合| 久久亚洲精品国产精品紫薇| 日韩欧美在线123| 久久久久久久久伊人| 国产拍欧美日韩视频二区| 国产精品久久久久久久午夜片| 欧美国产1区2区| 亚洲三级在线免费观看| 亚洲精品免费在线| 日韩av不卡在线观看| 久久精品国产在热久久| 国产成人av电影免费在线观看| 波多野结衣中文字幕一区| 91福利在线播放| 91精品国产日韩91久久久久久| 精品久久久久久久久久久院品网| 国产三级精品三级在线专区| 亚洲色图欧美激情| 亚洲成av人**亚洲成av**| 久久av资源网| 成人av网站免费观看| 欧美日韩国产一级| 久久精品在线观看| 亚洲国产日韩a在线播放| 久久黄色级2电影| 91丨porny丨最新| 欧美日韩一二三| 国产日韩v精品一区二区| 伊人婷婷欧美激情| 国产综合色视频| 91丝袜美腿高跟国产极品老师 | 国产成人av电影在线观看| 91美女片黄在线| 欧美一级欧美一级在线播放| 亚洲国产精品成人综合色在线婷婷| 夜夜爽夜夜爽精品视频| 国内成+人亚洲+欧美+综合在线| 色天使色偷偷av一区二区| 欧美不卡视频一区| 亚洲一区av在线| 高清在线成人网| 日韩欧美123| 午夜欧美电影在线观看| 波多野结衣精品在线| 日韩精品中文字幕一区二区三区| 亚洲色图制服丝袜|