精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

代寫COMP34212、代做Python/c++程序設計

時間:2024-04-29  來源:  作者: 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:ENGI 1331代做、代寫R程序語言
  • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      色综合av在线| 99久久国产综合色|国产精品| 中文字幕一区二区不卡| 2024国产精品视频| 精品久久久久久久久久久久久久久久久 | 久久免费看少妇高潮| 欧美一级片免费看| 日韩欧美成人一区二区| 欧美变态凌虐bdsm| 国产三级一区二区| 国产精品福利一区| 亚洲一线二线三线视频| 午夜婷婷国产麻豆精品| 免费观看成人鲁鲁鲁鲁鲁视频| 久久精品国产77777蜜臀| 国产在线国偷精品免费看| 国产激情偷乱视频一区二区三区| 国产福利91精品一区二区三区| 波波电影院一区二区三区| 色综合久久久久久久久久久| 欧美日韩国产美| 久久午夜电影网| 亚洲日本成人在线观看| 亚洲电影你懂得| 国内成人精品2018免费看| 波多野结衣一区二区三区| 欧美午夜精品久久久| 91麻豆精品国产91久久久 | 成人看片黄a免费看在线| 91免费精品国自产拍在线不卡| 欧美探花视频资源| 久久午夜羞羞影院免费观看| 亚洲精品成人悠悠色影视| 日本成人中文字幕| 成人app下载| 欧美一区二区三区免费观看视频| 国产精品乱码一区二区三区软件| 一区二区国产盗摄色噜噜| 国产一区二区三区电影在线观看| 色悠悠久久综合| 久久久www成人免费毛片麻豆 | 欧美一区二区视频在线观看| 国产精品视频线看| 欧美aaaaa成人免费观看视频| 不卡av电影在线播放| 欧美一区二区播放| 亚洲资源在线观看| 国产999精品久久久久久绿帽| 日韩一区二区在线看片| 玉米视频成人免费看| 成人一二三区视频| 欧美电影免费观看完整版| 亚洲香蕉伊在人在线观| 成人免费高清视频| 国产亚洲欧洲997久久综合| 亚洲国产毛片aaaaa无费看| 波多野结衣视频一区| 久久久久久久久久久久久女国产乱| 亚洲国产成人porn| 一本大道久久a久久综合| 国产精品久久久久久久久免费樱桃 | 99re在线视频这里只有精品| 久久久久久久综合| 老司机精品视频线观看86| 欧美人妇做爰xxxⅹ性高电影| 一区av在线播放| 一本到不卡精品视频在线观看| 亚洲国产成人在线| 国产91综合一区在线观看| 久久久精品蜜桃| 国产精品中文有码| 国产日韩三级在线| 国产在线观看一区二区| 26uuu欧美日本| 国产激情一区二区三区桃花岛亚洲| 久久综合九色综合97婷婷| 国产资源在线一区| 久久久久久久综合日本| 国产成人av一区二区三区在线观看| 国产视频一区二区三区在线观看| 国产精品一线二线三线| 欧美激情综合五月色丁香小说| 成人自拍视频在线| 亚洲欧美色综合| 欧美色图天堂网| 男男成人高潮片免费网站| 日韩免费视频一区| 国产成人免费在线观看不卡| 中文字幕免费在线观看视频一区| 不卡视频免费播放| 亚洲午夜免费福利视频| 欧美三级中文字幕在线观看| 日本欧美一区二区三区乱码| 久久综合九色综合97_久久久| 国产99久久精品| 亚洲欧美偷拍卡通变态| 欧美精品久久天天躁| 男女男精品网站| 国产精品色婷婷| 欧美日韩免费观看一区二区三区| 久久福利视频一区二区| 国产精品久久久久桃色tv| 欧美日韩在线不卡| 国产精品资源在线| 亚洲aⅴ怡春院| 国产亚洲一二三区| 欧美网站大全在线观看| 国产在线精品免费av| 成人欧美一区二区三区视频网页 | 美女任你摸久久| 欧美国产禁国产网站cc| 在线观看免费亚洲| 国产在线视频一区二区三区| 亚洲色图19p| 久久综合色一综合色88| 色老头久久综合| 国产成人在线视频免费播放| 亚洲午夜在线观看视频在线| 国产视频一区不卡| 欧美酷刑日本凌虐凌虐| av一区二区三区在线| 老司机午夜精品| 亚洲国产一区在线观看| 国产亚洲欧美激情| 欧美一级高清片在线观看| 色婷婷av一区| 99这里都是精品| 国产乱理伦片在线观看夜一区| 午夜日韩在线观看| 亚洲精品乱码久久久久久久久 | 欧美日韩亚洲高清一区二区| 成人午夜视频免费看| 美国毛片一区二区| 午夜欧美在线一二页| 亚洲私人黄色宅男| 国产精品污污网站在线观看| 日韩精品一区二| 日韩精品在线网站| 日韩亚洲欧美中文三级| 欧美精品精品一区| 欧美日韩精品一区二区在线播放| 92国产精品观看| 91视视频在线直接观看在线看网页在线看 | 亚洲一二三四久久| 一区二区免费在线播放| 亚洲免费在线观看| 亚洲精品中文字幕乱码三区| **欧美大码日韩| 一区二区三区在线影院| 亚洲日本青草视频在线怡红院 | 99在线精品一区二区三区| 粉嫩高潮美女一区二区三区| 国产成人aaa| 99精品国产一区二区三区不卡| 高清不卡一二三区| av在线一区二区| 色偷偷一区二区三区| 欧美日韩国产综合草草| 欧美人狂配大交3d怪物一区| 欧美一级夜夜爽| 亚洲精品一区二区三区99| 国产无一区二区| 国产精品卡一卡二卡三| 一区二区在线观看不卡| 亚洲1区2区3区4区| 日本在线观看不卡视频| 激情综合五月天| 福利电影一区二区| 色成人在线视频| 日韩欧美激情在线| 国产精品妹子av| 亚洲一卡二卡三卡四卡五卡| 日韩成人午夜精品| 国产成人午夜视频| 91黄色免费网站| 日韩你懂的在线观看| 国产精品久久久久久久久久免费看 | 国产欧美日韩精品在线| 日韩理论片在线| 日本亚洲天堂网| 国产成人免费在线视频| 91福利国产成人精品照片| 日韩欧美国产小视频| 国产精品久久久久三级| 视频一区中文字幕| 成人视屏免费看| 欧美精品v日韩精品v韩国精品v| 久久精品人人做人人综合| 一区二区三区免费在线观看| 国产一区二区成人久久免费影院| 不卡一卡二卡三乱码免费网站| 777精品伊人久久久久大香线蕉| 久久久精品一品道一区| 亚洲午夜日本在线观看| 成人精品gif动图一区| 欧美一三区三区四区免费在线看| 最新成人av在线| 国产精品一区二区久久不卡| 欧美亚洲国产一卡| 国产精品久久久久久亚洲伦|