精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

代寫COMP34212、代做Python/c++程序設計

時間:2024-04-29  來源:  作者: 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:ENGI 1331代做、代寫R程序語言
  • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      精品无码一区二区三区蜜臀| 日韩电影在线观看一区二区| 丰满岳乱妇国产精品一区| 日本一区二区在线观看视频| 一本色道久久综合精品婷婷| 欧美日韩色视频| 国内精品国产三级国产aⅴ久| 91精品国自产在线偷拍蜜桃| 亚洲av网址在线| 日本亚洲一区二区三区| 国产一区二区三区在线视频观看| 99久在线精品99re8热| 亚洲精品久久久久久久久久久久久久| 少妇网站在线观看| 欧美熟妇一区二区| 日韩不卡的av| 婷婷五月综合激情| 天天爱天天操天天干| 日韩人妻一区二区三区| 免费一级片视频| 欧美精品韩国精品| 久久亚洲精品石原莉奈| 久久久久99精品成人片我成大片 | 天天干,夜夜爽| 欧美 日韩 国产 一区二区三区| 久久久久久久久毛片| 免费a视频在线观看| 日产精品久久久久| 久久亚洲AV无码| 欧美成人精品欧美一级乱黄| 农村老熟妇乱子伦视频| 婷婷综合激情网| 亚洲图片小说视频| 成人av无码一区二区三区| 国产精品久久久久久久久久精爆| 波多野结衣视频网址| 国产欧美熟妇另类久久久| 久久午夜夜伦鲁鲁一区二区| 欧美一区二区三区久久久| 天天干天天爽天天操| 亚洲美女精品视频| 国产aⅴ爽av久久久久| 国产又粗又长视频| 青娱乐国产精品| 香蕉视频911| 99久在线精品99re8热| 精品1卡二卡三卡四卡老狼| 三区四区在线观看| 中文字幕在线播放av| 91精品人妻一区二区三区蜜桃欧美 | 久久这里只精品| 欧美 中文字幕| 中文字幕日韩一级| 国产女人18毛片水18精| 日韩 欧美 亚洲| 亚洲精品视频专区| 国产亚洲精品久久久久久打不开| 久久av一区二区三| 手机看片国产精品| 成人午夜精品视频| 熟妇人妻av无码一区二区三区 | 一级特黄aaa| 国内精品国产成人国产三级| 少妇大叫太粗太大爽一区二区| 中文字幕66页| 精品人妻一区二区三区免费| 在线视频日韩一区| 国产精品一区二区羞羞答答| 日本中文在线播放| 一级全黄少妇性色生活片| 精品国产一区在线| 中文字幕一区久久| 久久久久久亚洲av无码专区| 亚洲涩涩在线观看| 五月婷婷深爱五月| 乱子伦一区二区三区| 国产wwwxx| 四虎成人免费视频| 精品国产欧美日韩不卡在线观看| 日韩av综合在线| 国产美女福利视频| 永久免费黄色片| 久久福利小视频| 亚洲自拍一区在线观看| 久久精品无码一区| 成人小视频免费看| 亚洲精品自拍网| 日韩精品在线免费看| 国产美女网站视频| 91狠狠综合久久久| 中文字幕av网站| 四虎成人在线播放| 蜜臀av免费观看| 黄色免费一级视频| 国产精品果冻传媒| 99日在线视频| 亚洲卡一卡二卡三| 在线播放av网址| 日韩字幕在线观看| 久久久久久福利| 久久成年人网站| 久久久国产精品黄毛片| 国产三级自拍视频| 国产精品黄色大片| 国产一二三四五区| 国产性xxxx| 精品肉丝脚一区二区三区| 国产熟女一区二区三区五月婷| 囯产精品一品二区三区| 国产suv精品一区二区69| 91福利在线观看视频| 97人妻精品一区二区三区动漫| 亚洲视频在线a| 波多野结衣亚洲一区二区| 18精品爽国产三级网站| 亚洲精品午夜在线观看| 亚洲第一区av| 亚洲国产视频一区二区三区| 亚洲av无码一区二区乱子伦| 亚洲第一视频在线播放| 一区二区三区播放| 99热这里只有精品66| 国产又粗又爽视频| 好吊色视频一区二区三区| 久久艹精品视频| 天天操天天摸天天舔| 性高潮久久久久久久| 中文字幕1区2区3区| a天堂视频在线| 国产精品亚洲欧美在线播放| 精产国品一区二区| 日韩精品视频播放| 中文字幕日韩综合| 国产日韩视频一区| 男人天堂视频网| 中文字幕剧情在线观看| 岛国毛片在线观看| 欧美在线a视频| 亚洲高清精品视频| 国产精品熟女久久久久久| 美女黄色一级视频| 亚洲一二区在线观看| 国产免费高清av| 日韩丰满少妇无码内射| 午夜精产品一区二区在线观看的| 最近中文字幕av| 国产又粗又黄又爽的视频| 日韩精品在线免费视频| av中文字幕播放| 日韩精品xxx| a级黄色免费视频| 欧美三级韩国三级日本三斤在线观看| 在线观看国产一区二区三区| 国产成人黄色网址| 日本熟女一区二区| 99精品中文字幕| 人妻偷人精品一区二区三区| 91福利国产成人精品播放| 欧美偷拍一区二区三区| 亚洲精品午夜在线观看| 久久露脸国语精品国产91| 一级黄色高清视频| 日韩精品视频网址| 黄色片在线免费| 99精品视频免费看| 一区二区xxx| 欧美午夜精品理论片| 国产精品中文久久久久久| 少妇大叫太粗太大爽一区二区| 国产极品美女高潮无套嗷嗷叫酒店| 色播五月综合网| 国产又粗又长视频| 99久久免费国产精精品| 日韩视频中文字幕在线观看| 草久视频在线观看| 亚洲国产欧美另类| 天堂av2020| 欧美 日韩 综合| 国产精品一区二区亚洲| 亚洲永久精品ww.7491进入| 日韩久久久久久久久久| 精品久久久久久久久久久国产字幕| 一级黄色a毛片| 在线免费av网| 少妇大叫太粗太大爽一区二区| 国产特级黄色片| av地址在线观看| 亚洲毛片欧洲毛片国产一品色| 日韩精品一区二区av| 精品一区免费观看| 国产精久久一区二区三区| av亚洲天堂网| va视频在线观看| av丝袜天堂网| 一级特黄aaa大片| 亚洲天堂免费av| 亚洲最大成人综合网| 亚洲欧美视频在线播放| 亚洲日本黄色片| 91极品尤物在线播放国产|