精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

AI6126代做、Python設計程序代寫

時間:2024-04-12  來源:  作者: 我要糾錯



2023-S2 AI6126 Project 2
Blind Face Super-Resolution
Project 2 Specification (Version 1.0. Last update on 22 March 2024)
Important Dates
Issued: 22 March 2024
Release of test set: 19 April 2023 12:00 AM SGT
Due: 26 April 2023 11:59 PM SGT
Group Policy
This is an individual project
Late Submission Policy
Late submissions will be penalized (each day at 5% up to 3 days)
Challenge Description
Figure 1. Illustration of blind face restoration
The goal of this mini-challenge is to generate high-quality (HQ) face images from the
corrupted low-quality (LQ) ones (see Figure 1) [1]. The data for this task comes from
the FFHQ. For this challenge, we provide a mini dataset, which consists of 5000 HQ
images for training and 400 LQ-HQ image pairs for validation. Note that we do not
provide the LQ images in the training set. During the training, you need to generate
the corresponding LQ images on the fly by corrupting HQ images using the random
second-order degradation pipeline [1] (see Figure 2). This pipeline contains 4 types
of degradations: Gaussian blur, Downsampling, Noise, and Compression. We will
give the code of each degradation function as well as an example of the degradation
config for your reference.
Figure 2. Illustration of second-order degradation pipeline during training
During validation and testing, algorithms will generate an HQ image for each LQ face
image. The quality of the output will be evaluated based on the PSNR metric
between the output and HQ images (HQ images of the test set will not be released).
Assessment Criteria
In this challenge, we will evaluate your results quantitatively for scoring.
Quantitative evaluation:
We will evaluate and rank the performance of your network model on our given 400
synthetic testing LQ face images based on the PSNR.
The higher the rank of your solution, the higher the score you will receive. In general,
scores will be awarded based on the Table below.
Percentile
in ranking
≤ 5% ≤ 15% ≤ 30% ≤ 50% ≤ 75% ≤ 100% *
Scores 20 18 16 14 12 10 0
Notes:
● We will award bonus marks (up to 2 marks) if the solution is interesting or
novel.
● To obtain more natural HQ face images, we also encourage students to
attempt to use a discriminator loss with a GAN during the training. Note that
discriminator loss will lower the PSNR score but make the results look more
natural. Thus, you need to carefully adjust the GAN weight to find a tradeoff
between PSNR and perceptual quality. You may earn bonus marks (up to 2
marks) if you achieve outstanding results on the 6 real-world LQ images,
consisting of two slightly blurry, two moderately blurry, and two extremely
blurry test images. (The real-world test images will be released with the 400
test set) [optional]
● Marks will be deducted if the submitted files are not complete, e.g., important
parts of your core codes are missing or you do not submit a short report.
● TAs will answer questions about project specifications or ambiguities. For
questions related to code installation, implementation, and program bugs, TAs
will only provide simple hints and pointers for you.
Requirements
● Download the dataset, baseline configuration file, and evaluation script: here
● Train your network using our provided training set.
● Tune the hyper-parameters using our provided validation set.
● Your model should contain fewer than 2,276,356 trainable parameters, which
is 150% of the trainable parameters in SRResNet [4] (your baseline network).
You can use
● sum(p.numel() for p in model.parameters())
to compute the number of parameters in your network. The number of
parameters is only applicable to the generator if you use a GAN.
● The test set will be available one week before the deadline (this is a common
practice of major computer vision challenges).
● No external data and pre-trained models are allowed in this mini
challenge. You are only allowed to train your models from scratch using the
5000 image pairs in our given training set.
Submission Guidelines
Submitting Results on CodaLab
We will host the challenge on CodaLab. You need to submit your results to CodaLab.
Please follow the following guidelines to ensure your results are successfully
recorded.
● The CodaLab competition link:
https://codalab.lisn.upsaclay.fr/competitions/18233?secret_key
=6b842a59-9e76-47b1-8f56-283c5cb4c82b
● Register a CodaLab account with your NTU email.
● [Important] After your registration, please fill in the username in the Google
Form: https://forms.gle/ut764if5zoaT753H7
● Submit output face images from your model on the 400 test images as a zip
file. Put the results in a subfolder and use the same file name as the original
test images. (e.g., if the input image is named as 00001.png, your result
should also be named as 00001.png)
● You can submit your results multiple times but no more than 10 times per day.
You should report your best score (based on the test set) in the final report.
● Please refer to Appendix A for the hands-on instructions for the submission
procedures on CodaLab if needed.
Submitting Report on NTULearn
Submit the following files (all in a single zip file named with your matric number, e.g.,
A12345678B.zip) to NTULearn before the deadline:
● A short report in pdf format of not more than five A4 pages (single-column,
single-line spacing, Arial 12 font, the page limit excludes the cover page and
references) to describe your final solution. The report must include the
following information:
○ the model you use
○ the loss functions
○ training curves (i.e., loss)
○ predicted HQ images on 6 real-world LQ images (if you attempted the
adversarial loss during training)
○ PSNR of your model on the validation set
○ the number of parameters of your model
○ Specs of your training machine, e.g., number of GPUs, GPU model
You may also include other information, e.g., any data processing or
operations that you have used to obtain your results in the report.
● The best results (i.e., the predicted HQ images) from your model on the 400
test images. And the screenshot on Codalab of the score achieved.
● All necessary codes, training log files, and model checkpoint (weights) of your
submitted model. We will use the results to check plagiarism.
● A Readme.txt containing the following info:
○ Your matriculation number and your CodaLab username.
○ Description of the files you have submitted.
○ References to the third-party libraries you are using in your solution
(leave blank if you are not using any of them).
○ Any details you want the person who tests your solution to know when
they test your solution, e.g., which script to run, so that we can check
your results, if necessary.
Tips
1. For this project, you can use the Real-ESRGAN [1] codebase, which is based
on BasicSR toolbox that implements many popular image restoration
methods with modular design and provides detailed documentation.
2. We included a sample Real-ESRGAN configuration file (a simple network, i.e.,
SRResNet [4]) as an example in the shared folder. [Important] You need to:
a. Put “train_SRResNet_x4_FFHQ_300k.yml” under the “options” folder.
b. Put “ffhqsub_dataset.py” under the “realesrgan/data” folder.
The PSNR of this baseline on the validation set is around 26.33 dB.
3. For the calculation of PSNR, you can refer to ‘evaluate.py’ in the shared folder.
You should replace the corresponding path ‘xxx’ with your own path.
4. The training data is important in this task. If you do not plan to use MMEditing
for this project, please make sure your pipeline to generate the LQ data is
identical to the one in the configuration file.
5. The training configuration of GAN models is also available in Real-ESRGAN
and BasicSR. You can freely explore the repository.
6. The following techniques may help you to boost the performance:
a. Data augmentation, e.g. random horizontal flip (but do not use vertical
flip, otherwise, it will break the alignment of the face images)
b. More powerful models and backbones (within the complexity
constraint), please refer to some works in reference.
c. Hyper-parameters fine-tuning, e.g., choice of the optimizer, learning
rate, number of iterations
d. Discriminative GAN loss will help generate more natural results (but it
lowers PSNR, please find a trade-off by adjusting loss weights).
e. Think about what is unique to this dataset and propose novel modules.
References
[1] Wang et al., Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure
Synthetic Data, ICCVW 2021
[2] Wang et al., GFP-GAN: Towards Real-World Blind Face Restoration with Generative
Facial Prior, CVPR 2021
[3] Zhou et al., Towards Robust Blind Face Restoration with Codebook Lookup Transformer,
NeurIPS 2022
[4] C. Ledig et al., Photo-realistic Single Image Super-Resolution using a Generative
Adversarial Network, CVPR 2017
[5] Wang et al., A General U-Shaped Transformer for Image Restoration, CVPR 2022
[6] Zamir et al., Restormer: Efficient Transformer for High-Resolution Image Restoration,
CVPR 2022
Appendix A Hands-on Instructions for Submission on CodaLab
After your participation to the competition is approved, you can submit your results
here:
Then upload the zip file containing your results.
If the ‘STATUS’ turns to ‘Finished’, it means that you have successfully uploaded
your result. Please note that this may take a few minutes.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做IDEPG001、代寫c/c++,Java編程設計
  • 下一篇:CSI 2120代做、代寫Python/Java設計編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      国产一区久久久| 亚洲综合免费观看高清完整版在线| 91精彩视频在线| 99re免费视频精品全部| av不卡一区二区三区| 国产精品小仙女| 国产盗摄一区二区三区| 国产精品99久久久久久宅男| 麻豆精品久久精品色综合| 免费观看30秒视频久久| 激情久久久久久久久久久久久久久久| 老司机午夜精品| 国产精品1区2区| 成人av在线观| 欧美色手机在线观看| 91精品国产综合久久久蜜臀图片| 777亚洲妇女| 26uuu成人网一区二区三区| 国产午夜精品一区二区| 亚洲欧美综合色| 亚洲小说欧美激情另类| 日本不卡在线视频| 国产成人自拍在线| 欧美在线高清视频| 日韩精品一区二区三区视频在线观看| 久久久久久99精品| 亚洲欧美国产三级| 久久国产夜色精品鲁鲁99| 粉嫩13p一区二区三区| 91丨porny丨户外露出| 欧美喷潮久久久xxxxx| 精品国产免费一区二区三区四区| 中文字幕第一区二区| 一区二区三区在线免费| 日韩电影网1区2区| 成人天堂资源www在线| 欧美老肥妇做.爰bbww视频| 久久午夜国产精品| 天天做天天摸天天爽国产一区 | 一本大道久久a久久精品综合| 欧美午夜精品一区二区三区| 久久久亚洲国产美女国产盗摄 | 国产片一区二区三区| 一区二区理论电影在线观看| 激情综合网天天干| 欧美精品在线视频| 亚洲婷婷国产精品电影人久久| 欧美aaa在线| 色综合视频一区二区三区高清| 精品国产一区二区三区久久久蜜月| 一区二区中文视频| 国产伦理精品不卡| 6080国产精品一区二区| 亚洲欧美经典视频| 国产ts人妖一区二区| 91麻豆精品国产91久久久久久久久 | 成人av电影在线播放| 欧美乱熟臀69xxxxxx| 综合久久一区二区三区| 国产精品影视在线| 日韩美女视频在线| 日韩精品乱码av一区二区| 91免费小视频| 国产精品日产欧美久久久久| 极品销魂美女一区二区三区| 欧美美女bb生活片| 亚洲一二三区在线观看| 色一情一乱一乱一91av| 国产精品免费视频网站| 国产精品一二一区| 久久视频一区二区| 美女爽到高潮91| 91精品国产色综合久久ai换脸| 亚洲美女视频在线| 91国偷自产一区二区使用方法| 国产欧美精品一区aⅴ影院| 狠狠色丁香婷婷综合| 精品国产一区二区三区不卡| 久久草av在线| 欧美不卡一区二区三区| 麻豆成人免费电影| 精品国产一区二区三区四区四 | 亚洲国产精品视频| 欧美日韩亚洲综合一区二区三区 | 国产午夜精品在线观看| 国产传媒欧美日韩成人| 国产精品视频九色porn| 99麻豆久久久国产精品免费| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆| 成人福利在线看| 国产精品久久网站| 色婷婷久久99综合精品jk白丝 | 国产精品婷婷午夜在线观看| 成人sese在线| 一区二区三区在线观看网站| 精品污污网站免费看| 免费久久99精品国产| 久久久久久久久免费| av电影一区二区| 亚洲综合图片区| 91精品免费在线观看| 麻豆精品视频在线| 中文字幕在线观看一区二区| 欧美亚洲国产一卡| 国产一区二区三区久久久| 中文字幕日韩精品一区| 91精品国产色综合久久不卡电影| 国产主播一区二区三区| 自拍偷在线精品自拍偷无码专区| 欧美美女黄视频| 国产成人在线视频网址| 亚洲图片欧美视频| 国产欧美日韩在线| 69久久99精品久久久久婷婷| 国产乱一区二区| 午夜一区二区三区视频| 国产欧美日韩卡一| 欧美一区中文字幕| 色综合视频在线观看| 激情综合网av| 亚洲永久免费av| 亚洲国产高清在线观看视频| 欧美日韩国产a| a在线欧美一区| 精品一区二区国语对白| 亚洲图片有声小说| 亚洲人精品午夜| 国产亚洲福利社区一区| 91超碰这里只有精品国产| 91亚洲精品一区二区乱码| 久久国产婷婷国产香蕉| 午夜国产不卡在线观看视频| 亚洲人123区| 国产区在线观看成人精品| 3751色影院一区二区三区| 91浏览器入口在线观看| 国产91清纯白嫩初高中在线观看| 久久99久久精品| 亚洲成在人线免费| 亚洲已满18点击进入久久| 中文在线一区二区| 日本一区二区三区电影| 久久综合九色综合欧美98| 欧美一区二区精品久久911| 欧洲视频一区二区| 一本久道中文字幕精品亚洲嫩| 成人性生交大片免费看视频在线| 精品午夜一区二区三区在线观看| 日日夜夜精品视频免费| 日韩精品视频网| 亚洲高清视频中文字幕| 亚洲国产人成综合网站| 亚洲综合另类小说| 午夜视频一区在线观看| 婷婷久久综合九色综合绿巨人| 亚洲成在人线在线播放| 亚洲v精品v日韩v欧美v专区| 亚洲国产成人porn| 奇米777欧美一区二区| 日韩成人免费看| 老司机精品视频一区二区三区| 麻豆成人综合网| 国产久卡久卡久卡久卡视频精品| 国产自产高清不卡| 国产99久久久国产精品潘金 | 久久久久久久综合色一本| 国产亚洲一区二区三区四区| 欧美国产综合一区二区| 中文字幕视频一区| 亚洲香肠在线观看| 免费不卡在线观看| 粉嫩一区二区三区在线看| 91丨九色丨黑人外教| 在线观看国产一区二区| 在线成人av网站| 欧美成人乱码一区二区三区| 国产欧美1区2区3区| 亚洲人成人一区二区在线观看 | 麻豆精品国产91久久久久久| 毛片av中文字幕一区二区| 国产精品亚洲第一| 在线这里只有精品| 欧美成人乱码一区二区三区| 中文av一区特黄| 亚洲第一久久影院| 国产一区二区三区免费播放| 91浏览器在线视频| 欧美变态tickling挠脚心| 亚洲欧美在线高清| 秋霞国产午夜精品免费视频| 成人av在线播放网址| 欧美一区二区成人| 亚洲欧美日韩一区二区三区在线观看| 亚洲不卡一区二区三区| 成人一区在线看| 欧美一区二区三区在线电影| 国产精品免费人成网站| 老司机午夜精品| 在线日韩国产精品| 中文子幕无线码一区tr|