精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

JC3509編程代做、代寫Python程序設(shè)計

時間:2024-03-31  來源:  作者: 我要糾錯



page 1 of 3
 University of Aberdeen
 South China Normal University
 Aberdeen Institute of Data Science
 & Artificial Intelligence.
 BSc in Artificial Intelligence 2023 – 2024
**Please read all the information below carefully**
Assessment I Briefing Document – Individually Assessed (no teamwork)
Course: JC3509 – Machine Learning Note: This part of assessment accounts for
30% of your total mark of the course.
Learning Outcomes
On successful completion of this component a student will have demonstrated competence in the
following areas:
• Ability to identify, prepare, & manage appropriate datasets for analysis.
• Ability to appropriately present the results of data analysis.
• Ability to analyse the results of data analyses, and to evaluate the performance of analytic
techniques in context.
• Knowledge and understanding of analytic techniques, and ability to appropriately apply
them in context, making correct judgements about how this needs to be done.
Information for Plagiarism and Conduct: Your submitted report may be submitted for
plagiarism check (e.g., Turnitin). Please refer to the slides available at MyAberdeen for more
information about avoiding plagiarism before you start working on the assessment. Please also read
the following information provided by the university: https://www.abdn.ac.uk/sls/onlineresources/avoiding-plagiarism/
In addition, please familiarise yourselves with the following document “code of practice on student
discipline (Academic)”: https://tinyurl.com/y92xgkq6
Report Guidance & Requirements
Your report must conform to the below structure and include the required content as outlined in each
section. Each subtask has its own marks allocated. You must supply a written report, along with the
corresponding code, containing all distinct sections/subtasks that provide a full critical and reflective
account of the processes undertaken.
Overview
This assignment tasks you to undertake the full machine learning pipeline, including data handling
and processing, model construction and training, and evaluation of the developed methods. You are
tasked to create a neural network to classify data into 3 categories.
page 2 of 3
**Please read all the information below carefully**
The dataset needed to fulfil the requirements of this assessment can be found in MyAberdeen.
Data:
This data contains the chemical properties of food product produced by 3 different manufacturers.
The purpose of this experiment is to explore the relationship between the chemical measures listed
below and the manufacturer of the food product. The data has 177 records, where the first column
“Producer” indicates which manufacturer produced the analyses sample. The features of the dataset
are the following:
• Producer – Manufacturer of the product (TARGET).
• Amino_acid – The total percentage content of animo acid.
• Malic_acid – The percentage content of malic acid.
• Ash – The measure of ash present in the product.
• Alc – The alcalinity of ash present.
• Mg – The measure of magnesium.
• Phenols – The total measure of phenols.
• Flavanoids – The measure of flavonoid phenols in the product.
• Nonflavanoid_phenols – The measure of non-flavonoid phenols in the product.
• Proanth – Proanthocyanins measure.
• Colo_int – The color intensity.
• Hue – Hue of the color.
• OD – The protein content of the product.
• Proline – The measure of proline amino acids.
Objectives:
The main purpose of employing this data is the following:
1. Classification: to determine the origin (manufacturer) of the product given analytical
measurements.
2. Analysis: to infer which analytical factors would potentially influence the classification of
the product.
In order to achieve these objectives, we would like to accomplish the following subtasks using
machine learning.
Submission
Please provide the follow:
1. A written report explaining the steps undertaken for each task, and the decisions behind each
choice. You are expected to use machine learning principles to explain your results with
graphs and/or tables.
2. A code submission, comprising of ONE commented python file with all code needed to
replicate the findings in the written report.
page 3 of 3
**Please read all the information below carefully**
Task 1 – Data Preparation (10 Marks)
Subtasks:
1. Import the dataset: Please provide a short description of the data provided and import the data
into your programming environment; provide snippets of code for these purposes.
2. Preprocess the data: If you did any preprocessing over the data, e.g., normalization, please
explain it and the reasons why you did that preprocessing; if you did not do any preprocessing,
also please explain.
Task 2 – Model Construction (50 Marks)
You are tasked to build simple fully connected artificial neural network from scratch to classify the
records into 3 categories (1, 2, or 3).
You are not permitted to use any machine learning or statistical libraries, you are expected to
construct the neural network from scratch, i.e. only using core Python and NumPy.
Subtasks:
1. Loss function: Select and implement an appropriate loss function, explain why you have
selected that loss function in relation to the data and the problem.
2. Network Design: Construct a fully connected neural network with at least one hidden layer.
Explain your architectural choice and demonstrate by code snippets, tests, and written
explanation that your code operates as expected. To achieve this, you will need to implement
both:
a. The Forward Pass.
b. The Backward Pass.
3. Gradient Descent: Update the weights by mini-batch stochastic gradient descent.
Demonstrate by code snippets, tests, and written explanation that the weights are being
updated. You can use advanced optimisation tricks if you wish i.e. momentum.
NOTE: If you are unable to complete the above tasks, you are permitted to use additional libraries
(i.e. PyTorch) however, this will result in a deduction of 20 marks.
Task 3 – Model Training (15 Marks)
Take the model from the previous task and train it on the data you pre-processed in Task 1. Ensure
that you train your model on a sub-set of the data, holding out a subset for validation.
Subtasks:
1. Model Training: Perform training and parameter selection on the training set.
2. Module Regularisation: Implement a regularisation method, briefly explain (Max 200 words)
how it works in the context of your code, use code snippets to help.
3. Model inference: Validate the model by performing inference on the held-out validation data.
page 4 of 3
**Please read all the information below carefully**
Task 4 – Evaluation (25 Marks)
Evaluate the performance of your trained classifier and employ machine learning principles to
explain your results with graphs and/or tables. In addition, perform some analyses on the trained
model to better understand which analytical factors would potentially influence the classification of
the product.
Subtasks:
1. Present Results: Present the results of your classifier via appropriate metrics for the problem
statement.
2. Plot: Plot the loss curve for training and validation, answer the following questions:
a. What does your loss curve tell you?
b. Are you observing any overfitting or underfitting?
c. Does the addition of regularisation help?
3. Explain Results: Explain the results from the previous subtasks in context of the problem
statement/setting.
Marking Criteria
• Depth and breadth of knowledge.
• Technical details of formalisation, implementation and pseudo-code.
• Communication skills (clear, technical contents and sound reasoning)
• Structure of document.
Submission Instructions
You should submit a PDF version of your report and the accompanying code to the Codio
environment. For the deadline of this assessment, please check it on MyAberdeen. The name of the
PDF file should have the form “JC3509_Assessment1 _< your Surname>_<your first
name>_<Your Student ID>”. For instance, “JC3509_Assessment1_Smith_John_4568985.pdf”,
where 4568985 is your student ID.
Any questions pertaining to any aspects of this assessment, please address them to the course
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp








 

標(biāo)簽:

掃一掃在手機打開當(dāng)前頁
  • 上一篇:CHC5223代寫、Java/c++編程設(shè)計代做
  • 下一篇:代寫CSci 4061、c/c++,Java程序代做
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      av不卡在线播放| 国产福利精品导航| 玉足女爽爽91| 国产精品三级视频| 国产精品久久久久久久久免费樱桃| 精品国产亚洲在线| 久久这里只有精品视频网| 日韩精品一区二| 精品国产制服丝袜高跟| 久久人人超碰精品| 中文字幕一区二| 一区二区三区在线观看欧美| 亚洲一区免费视频| 日韩中文字幕不卡| 久久精品噜噜噜成人av农村| 国内偷窥港台综合视频在线播放| 精品一区二区三区香蕉蜜桃| 国产一区二区调教| 91网站最新地址| 欧美色综合久久| 日韩一卡二卡三卡国产欧美| 久久亚洲精品小早川怜子| 国产精品另类一区| 亚洲影视资源网| 麻豆精品蜜桃视频网站| 成人永久aaa| 在线观看中文字幕不卡| 日韩一级高清毛片| 一区在线观看免费| 日本中文字幕不卡| av在线不卡观看免费观看| 欧美主播一区二区三区| 精品国产一区二区三区久久久蜜月| 久久久久久久久久电影| 亚洲视频一二区| 精品一区二区三区蜜桃| av亚洲精华国产精华精华| 欧美精品18+| 国产精品免费久久| 免播放器亚洲一区| 波多野结衣精品在线| 欧美一级搡bbbb搡bbbb| 国产精品乱子久久久久| 蜜乳av一区二区| 国产高清精品网站| 欧美日韩在线观看一区二区| 欧美国产日韩亚洲一区| 天天综合天天综合色| av电影在线观看一区| 精品少妇一区二区三区日产乱码| 中文字幕一区av| 国产在线乱码一区二区三区| 欧美午夜精品电影| 久久久精品国产99久久精品芒果| 调教+趴+乳夹+国产+精品| 成人国产精品免费| 国产午夜精品一区二区 | 国产精品欧美综合在线| 日韩成人伦理电影在线观看| 色综合久久88色综合天天6| 亚洲精品一线二线三线| 蜜臀精品一区二区三区在线观看| 色综合久久综合中文综合网| 日本一区二区三区四区在线视频| 麻豆视频观看网址久久| 这里只有精品视频在线观看| 一区二区在线观看免费| 白白色 亚洲乱淫| 国产日韩精品视频一区| 国内久久婷婷综合| 26uuu国产电影一区二区| 蜜桃传媒麻豆第一区在线观看| 欧美老女人在线| 无吗不卡中文字幕| 欧美日韩国产首页| 午夜精品久久久久久久99樱桃| 日本韩国视频一区二区| 一片黄亚洲嫩模| 在线视频一区二区免费| 亚洲高清视频中文字幕| 欧美三级视频在线| 日韩国产精品大片| 欧美一区二区三区日韩视频| 免费三级欧美电影| 久久人人爽爽爽人久久久| 国产精品一品二品| 国产精品福利在线播放| 91老师片黄在线观看| 亚洲精品中文在线观看| 欧美性色综合网| 日韩高清不卡一区二区| 精品久久久三级丝袜| 国产精品自在在线| 最近中文字幕一区二区三区| 在线观看国产一区二区| 欧美aaa在线| 国产欧美久久久精品影院| 99精品热视频| 日一区二区三区| 久久久久久久久久久黄色| av中文字幕亚洲| 亚洲v日本v欧美v久久精品| 日韩欧美国产1| 97久久精品人人爽人人爽蜜臀| 亚洲一卡二卡三卡四卡无卡久久| 91精品在线免费| 成人三级伦理片| 日日夜夜一区二区| 中文字幕不卡三区| 91精品国产入口| caoporn国产精品| 日韩中文字幕一区二区三区| 久久精品一区蜜桃臀影院| 色欧美片视频在线观看在线视频| 日本美女视频一区二区| 日本一区二区电影| 91精品国产综合久久精品图片 | 欧美一级国产精品| 成人免费的视频| 日韩在线一区二区三区| 国产精品美女视频| 精品国产91久久久久久久妲己| 91麻豆成人久久精品二区三区| 精品一区精品二区高清| 亚洲成人免费在线| 国产精品电影院| 精品少妇一区二区三区在线播放| 色一情一乱一乱一91av| 国产成人av影院| 久久精品国产网站| 日韩专区在线视频| 一区二区三区日韩| 国产精品国产自产拍在线| 欧美电影免费观看高清完整版| 欧洲一区在线观看| 色婷婷久久久综合中文字幕| 国产精品1024| 国产综合色在线视频区| 青青草97国产精品免费观看无弹窗版| 国产精品第一页第二页第三页| 日韩美女主播在线视频一区二区三区| 在线观看91精品国产入口| 91猫先生在线| 9i看片成人免费高清| 成人小视频免费在线观看| 国产在线视频精品一区| 国产制服丝袜一区| 国模无码大尺度一区二区三区| 蜜桃久久久久久| 六月婷婷色综合| 久久国内精品视频| 国产专区欧美精品| 国产精品一区二区在线播放| 精品一二三四在线| 国产精品一区二区久激情瑜伽| 国产在线一区二区综合免费视频| 蓝色福利精品导航| 国产一区二区三区四区五区美女| 韩日av一区二区| 国产成人福利片| 成人久久18免费网站麻豆| av不卡免费在线观看| 色婷婷精品久久二区二区蜜臀av | 国产大陆a不卡| 成人久久久精品乱码一区二区三区 | 在线观看成人免费视频| 欧美中文字幕亚洲一区二区va在线| 91精品91久久久中77777| 欧美日韩国产综合一区二区| 在线电影院国产精品| www国产亚洲精品久久麻豆| 国产欧美精品一区| 亚洲最大成人综合| 蜜臀国产一区二区三区在线播放| 黄网站免费久久| 9i看片成人免费高清| 欧美日韩国产精品成人| 精品日韩欧美在线| 国产精品福利在线播放| 亚洲福利视频导航| 国产精品影视网| 在线观看视频一区| 久久亚洲春色中文字幕久久久| 国产精品精品国产色婷婷| 午夜视频一区在线观看| 国产精品性做久久久久久| 色综合一区二区| 欧美一区二区三区四区五区| 国产日韩欧美在线一区| 亚洲福利视频三区| 成人午夜电影小说| 3atv在线一区二区三区| 国产精品欧美久久久久一区二区 | 精品99一区二区| 亚洲午夜久久久久久久久电影网| 久久99国产乱子伦精品免费| 91污在线观看| 久久久精品免费免费| 日韩av中文在线观看| 色综合一个色综合亚洲|