精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

JC3509編程代做、代寫Python程序設計

時間:2024-03-31  來源:  作者: 我要糾錯



page 1 of 3
 University of Aberdeen
 South China Normal University
 Aberdeen Institute of Data Science
 & Artificial Intelligence.
 BSc in Artificial Intelligence 2023 – 2024
**Please read all the information below carefully**
Assessment I Briefing Document – Individually Assessed (no teamwork)
Course: JC3509 – Machine Learning Note: This part of assessment accounts for
30% of your total mark of the course.
Learning Outcomes
On successful completion of this component a student will have demonstrated competence in the
following areas:
• Ability to identify, prepare, & manage appropriate datasets for analysis.
• Ability to appropriately present the results of data analysis.
• Ability to analyse the results of data analyses, and to evaluate the performance of analytic
techniques in context.
• Knowledge and understanding of analytic techniques, and ability to appropriately apply
them in context, making correct judgements about how this needs to be done.
Information for Plagiarism and Conduct: Your submitted report may be submitted for
plagiarism check (e.g., Turnitin). Please refer to the slides available at MyAberdeen for more
information about avoiding plagiarism before you start working on the assessment. Please also read
the following information provided by the university: https://www.abdn.ac.uk/sls/onlineresources/avoiding-plagiarism/
In addition, please familiarise yourselves with the following document “code of practice on student
discipline (Academic)”: https://tinyurl.com/y92xgkq6
Report Guidance & Requirements
Your report must conform to the below structure and include the required content as outlined in each
section. Each subtask has its own marks allocated. You must supply a written report, along with the
corresponding code, containing all distinct sections/subtasks that provide a full critical and reflective
account of the processes undertaken.
Overview
This assignment tasks you to undertake the full machine learning pipeline, including data handling
and processing, model construction and training, and evaluation of the developed methods. You are
tasked to create a neural network to classify data into 3 categories.
page 2 of 3
**Please read all the information below carefully**
The dataset needed to fulfil the requirements of this assessment can be found in MyAberdeen.
Data:
This data contains the chemical properties of food product produced by 3 different manufacturers.
The purpose of this experiment is to explore the relationship between the chemical measures listed
below and the manufacturer of the food product. The data has 177 records, where the first column
“Producer” indicates which manufacturer produced the analyses sample. The features of the dataset
are the following:
• Producer – Manufacturer of the product (TARGET).
• Amino_acid – The total percentage content of animo acid.
• Malic_acid – The percentage content of malic acid.
• Ash – The measure of ash present in the product.
• Alc – The alcalinity of ash present.
• Mg – The measure of magnesium.
• Phenols – The total measure of phenols.
• Flavanoids – The measure of flavonoid phenols in the product.
• Nonflavanoid_phenols – The measure of non-flavonoid phenols in the product.
• Proanth – Proanthocyanins measure.
• Colo_int – The color intensity.
• Hue – Hue of the color.
• OD – The protein content of the product.
• Proline – The measure of proline amino acids.
Objectives:
The main purpose of employing this data is the following:
1. Classification: to determine the origin (manufacturer) of the product given analytical
measurements.
2. Analysis: to infer which analytical factors would potentially influence the classification of
the product.
In order to achieve these objectives, we would like to accomplish the following subtasks using
machine learning.
Submission
Please provide the follow:
1. A written report explaining the steps undertaken for each task, and the decisions behind each
choice. You are expected to use machine learning principles to explain your results with
graphs and/or tables.
2. A code submission, comprising of ONE commented python file with all code needed to
replicate the findings in the written report.
page 3 of 3
**Please read all the information below carefully**
Task 1 – Data Preparation (10 Marks)
Subtasks:
1. Import the dataset: Please provide a short description of the data provided and import the data
into your programming environment; provide snippets of code for these purposes.
2. Preprocess the data: If you did any preprocessing over the data, e.g., normalization, please
explain it and the reasons why you did that preprocessing; if you did not do any preprocessing,
also please explain.
Task 2 – Model Construction (50 Marks)
You are tasked to build simple fully connected artificial neural network from scratch to classify the
records into 3 categories (1, 2, or 3).
You are not permitted to use any machine learning or statistical libraries, you are expected to
construct the neural network from scratch, i.e. only using core Python and NumPy.
Subtasks:
1. Loss function: Select and implement an appropriate loss function, explain why you have
selected that loss function in relation to the data and the problem.
2. Network Design: Construct a fully connected neural network with at least one hidden layer.
Explain your architectural choice and demonstrate by code snippets, tests, and written
explanation that your code operates as expected. To achieve this, you will need to implement
both:
a. The Forward Pass.
b. The Backward Pass.
3. Gradient Descent: Update the weights by mini-batch stochastic gradient descent.
Demonstrate by code snippets, tests, and written explanation that the weights are being
updated. You can use advanced optimisation tricks if you wish i.e. momentum.
NOTE: If you are unable to complete the above tasks, you are permitted to use additional libraries
(i.e. PyTorch) however, this will result in a deduction of 20 marks.
Task 3 – Model Training (15 Marks)
Take the model from the previous task and train it on the data you pre-processed in Task 1. Ensure
that you train your model on a sub-set of the data, holding out a subset for validation.
Subtasks:
1. Model Training: Perform training and parameter selection on the training set.
2. Module Regularisation: Implement a regularisation method, briefly explain (Max 200 words)
how it works in the context of your code, use code snippets to help.
3. Model inference: Validate the model by performing inference on the held-out validation data.
page 4 of 3
**Please read all the information below carefully**
Task 4 – Evaluation (25 Marks)
Evaluate the performance of your trained classifier and employ machine learning principles to
explain your results with graphs and/or tables. In addition, perform some analyses on the trained
model to better understand which analytical factors would potentially influence the classification of
the product.
Subtasks:
1. Present Results: Present the results of your classifier via appropriate metrics for the problem
statement.
2. Plot: Plot the loss curve for training and validation, answer the following questions:
a. What does your loss curve tell you?
b. Are you observing any overfitting or underfitting?
c. Does the addition of regularisation help?
3. Explain Results: Explain the results from the previous subtasks in context of the problem
statement/setting.
Marking Criteria
• Depth and breadth of knowledge.
• Technical details of formalisation, implementation and pseudo-code.
• Communication skills (clear, technical contents and sound reasoning)
• Structure of document.
Submission Instructions
You should submit a PDF version of your report and the accompanying code to the Codio
environment. For the deadline of this assessment, please check it on MyAberdeen. The name of the
PDF file should have the form “JC3509_Assessment1 _< your Surname>_<your first
name>_<Your Student ID>”. For instance, “JC3509_Assessment1_Smith_John_4568985.pdf”,
where 4568985 is your student ID.
Any questions pertaining to any aspects of this assessment, please address them to the course
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp








 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:CHC5223代寫、Java/c++編程設計代做
  • 下一篇:代寫CSci 4061、c/c++,Java程序代做
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      午夜影院免费体验区| 日本一区二区三区久久| 丰满少妇乱子伦精品看片| 日韩精品久久久久久久酒店| 国产精品午夜影院| 99久久免费看精品国产一区| 午夜美女福利视频| 日本二区在线观看| 免费毛片一区二区三区| 国产一级片久久| 91精产国品一二三产区别沈先生| 午夜免费福利视频在线观看| 熟女高潮一区二区三区| 日韩中文字幕在线观看视频| 蜜桃在线一区二区| 国产一区二区小视频| 国产精品久久久久久久妇| 丁香六月天婷婷| 国产福利短视频| 成人1区2区3区| 波多野结衣亚洲色图| japanese中文字幕| 国产精品一区二区在线免费观看 | 成人免费一区二区三区| 在线观看岛国av| 亚洲免费视频二区| www色com| 久久久.www| 日本三级视频在线| 亚洲av无码一区二区三区dv| 在线观看精品国产| 亚洲婷婷综合网| 国产理论片在线观看| 九九免费精品视频| 欧美偷拍第一页| 五月婷在线视频| 992在线观看| 国产精品国产精品国产专区| 国产一级二级毛片| 精品人妻一区二区免费| 欧美熟妇乱码在线一区| 香蕉av在线播放| av中文字幕免费观看| 精品综合久久久久| 亚洲av色香蕉一区二区三区| 91国在线视频| 久久福利免费视频| 亚洲福利在线观看视频| 国产精品麻豆免费版现看视频| 韩国av永久免费| 日韩久久中文字幕| www中文在线| 人人爽人人爽人人片av| 69精品久久久| 国产综合精品在线| 性色av浪潮av| 国产在线不卡av| 中文字幕你懂的| 久久久精品99| 亚洲一二三四五| 久久久久99精品成人片三人毛片 | 日韩在线视频免费播放| 一本大道伊人av久久综合| 精品久久久久成人码免费动漫| 亚洲av无码一区东京热久久| av地址在线观看| 日本熟妇一区二区| 国产成人精品一区二三区| 男人天堂视频在线| av免费观看不卡| 日韩影视一区二区三区| 国产a√精品区二区三区四区| 日韩精品一区二区在线播放| 国产精品久久久国产盗摄| 婷婷五月精品中文字幕| 精品无码一区二区三区的天堂| 一级片久久久久| 日韩精品久久久久久久| 国产又大又长又粗| 波多野结衣一二三四区| 一区二区www| 欧美手机在线观看| 国产精品二区一区二区aⅴ| 亚洲精品免费在线观看视频| 日本加勒比一区| 久草视频免费在线| 国产精品99精品| 91欧美一区二区三区| 午夜免费福利视频在线观看| 麻豆一区二区三区精品视频 | 日韩欧美一级大片| 精品久久无码中文字幕| 超碰成人在线播放| 在线成人免费av| 日本少妇久久久| 九九精品久久久| 国产三级国产精品国产国在线观看| 午夜久久久久久久久久| 日韩精品一区二区三区高清免费| 久久精品日韩无码| 黄色国产在线观看| 国产熟妇一区二区三区四区| 国产精品av久久久久久无| 97精品久久人人爽人人爽| 中文字幕在线视频一区二区| 色婷婷综合网站| 欧美三级 欧美一级| 久久综合色综合| 精品国产午夜福利在线观看| 风流少妇一区二区三区91| 国产成人av片| 国产性一乱一性一伧一色| 国产三级国产精品国产专区50| 国产suv一区二区| 国产大片中文字幕在线观看| 国产成人无码www免费视频播放| 99热这里只有精品99| 99视频在线观看免费| av污在线观看| 国产免费一区二区三区最新6| 国产成人精品一区二区在线小狼| 成人h动漫精品一区二区下载| 国产精品色综合| 国产精品人人爽人人爽| 国产香蕉视频在线| 麻豆精品国产传媒| 午夜精品久久久久久久第一页按摩 | 国产精品理论在线| 国产一区第一页| 女人18毛片一区二区三区| 九九热精彩视频| 日本美女视频一区| 在线观看日本一区二区| 爱情岛论坛成人| 久久久久亚洲av片无码| 青娱乐国产视频| 少妇av一区二区| 亚洲视频在线a| 国产一级特黄aaa大片| 秋霞av一区二区三区| 亚洲精品国偷拍自产在线观看蜜桃| h色网站在线观看| 久久久久久成人网| 一区二区精品免费| 国产麻豆剧传媒精品国产| 人妻无码一区二区三区| 亚洲天堂伊人网| 国产乱码精品一区二区| 人妻视频一区二区三区| 亚洲中文字幕无码av| 久久精品色妇熟妇丰满人妻| 少妇高潮久久久| 成人免费看片98欧美| 日本aⅴ在线观看| 97人妻精品一区二区三区免| 男人网站在线观看| aaa一区二区三区| 人妻中文字幕一区| 99在线精品视频免费观看20| 可以直接看的无码av| 一本一道久久a久久综合蜜桃| 久久久蜜桃一区二区| a级在线免费观看| 四虎在线视频免费观看| 国产精品区在线| 亚欧视频在线观看| 国产成人av免费| 亚洲va综合va国产va中文| 精品无码免费视频| 99久久精品久久亚洲精品| 日韩综合在线观看| 国产原创精品在线| 999精品免费视频| 特黄特色免费视频| 久久久久99人妻一区二区三区 | 国产尤物在线视频| 亚洲欧美高清在线| 日本不卡一区视频| 国产一级片播放| 一级全黄少妇性色生活片| 欧美风情第一页| 国产探花在线观看视频| 99这里有精品视频| 五月天激情小说| 免费网站看av| 国产一级黄色av| 国产精品国产精品国产专区| 亚洲图片视频小说| 这里只有久久精品| 日韩免费观看一区二区| 精品99在线观看| 国产一级片播放| 高潮毛片无遮挡| 亚洲天堂网一区二区| 五月婷婷六月丁香综合| 人人妻人人爽人人澡人人精品| 黄色a在线观看| 精品乱子伦一区二区| www.av在线.com| 国产aⅴ一区二区三区|