<samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
<ul id="e4iaa"></ul>
<blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>

      代做IEMS 5730、代寫 c++,Java 程序設(shè)計

      時間:2024-03-11  來源:  作者: 我要糾錯



      IEMS 5730 Spring 2024 Homework 2
      Release date: Feb 23, 2024
      Due date: Mar 11, 2024 (Monday) 11:59:00 pm
      We will discuss the solution soon after the deadline. No late homework will be accepted!
      Every Student MUST include the following statement, together with his/her signature in the submitted homework.
      I declare that the assignment submitted on Elearning system is original except for source material explicitly acknowledged, and that the same or related material has not been previously submitted for another course. I also acknowledge that I am aware of University policy and regulations on honesty in academic work, and of the disciplinary guidelines and procedures applicable to breaches of such policy and regulations, as contained in the website http://www.cuhk.edu.hk/policy/academichonesty/.
      Signed (Student_________________________) Date:______________________________ Name_________________________________ SID_______________________________
      Submission notice:
      ● Submit your homework via the elearning system.
      ● All students are required to submit this assignment.
      General homework policies:
      A student may discuss the problems with others. However, the work a student turns in must be created COMPLETELY by oneself ALONE. A student may not share ANY written work or pictures, nor may one copy answers from any source other than one’s own brain.
      Each student MUST LIST on the homework paper the name of every person he/she has discussed or worked with. If the answer includes content from any other source, the student MUST STATE THE SOURCE. Failure to do so is cheating and will result in sanctions. Copying answers from someone else is cheating even if one lists their name(s) on the homework.
      If there is information you need to solve a problem, but the information is not stated in the problem, try to find the data somewhere. If you cannot find it, state what data you need, make a reasonable estimate of its value, and justify any assumptions you make. You will be graded not only on whether your answer is correct, but also on whether you have done an intelligent analysis.
      Submit your output, explanation, and your commands/ scripts in one SINGLE pdf file.

       Q1 [20 marks + 5 Bonus marks]: Basic Operations of Pig
      You are required to perform some simple analysis using Pig on the n-grams dataset of Google books. An ‘n-gram’ is a phrase with n words. The dataset lists all n-grams present in books from books.google.com along with some statistics.
      In this question, you only use the Google books bigram (1-grams). Please go to Reference [1] and [2] to download the two datasets. Each line in these two files has the following format (TAB separated):
      bigram year match_count
      An example for 1-grams would be:
      volume_count
      circumvallate 1978 335 91 circumvallate 1979 261 95
      This means that in 1978(1979), the word "circumvallate" occurred 335(261) times overall, from 91(95) distinct books.
      (a) [Bonus 5 marks] Install Pig in your Hadoop cluster. You can reuse your Hadoop cluster in IEMS 5730 HW#0 and refer to the following link to install Pig 0.17.0 over the master node of your Hadoop cluster :
      http://pig.apache.org/docs/r0.17.0/start.html#Pig+Setup
      Submit the screenshot(s) of your installation process.
      If you choose not to do the bonus question in (a), you can use any well-installed Hadoop cluster, e.g., the IE DIC, or the Hadoop cluster provided by the Google Cloud/AWS [5, 6, 7] to complete the following parts of the question:
      (b) [5 marks] Upload these two files to HDFS and join them into one table.
      (c) [5 marks] For each unique bigram, compute its average number of occurrences per year. In the above example, the result is:
      circumvallate (335 + 261) / 2 = 298
      Notes: The denominator is the number of years in which that word has appeared. Assume the data set contains all the 1-grams in the last 100 years, and the above records are the only records for the word ‘circumvallate’. Then the average value is:
       instead of
      (335 + 261) / 2 = 298, (335 + 261) / 100 = 5.96
      (d) [10 marks] Output the 20 bigrams with the highest average number of occurrences per year along with their corresponding average values sorted in descending order. If multiple bigrams have the same average value, write down anyone you like (that is,

       break ties as you wish).
      You need to write a Pig script to perform this task and save the output into HDFS.
      Hints:
      ● This problem is very similar to the word counting example shown in the lecture notes
      of Pig. You can use the code there and just make some minor changes to perform this task.
      Q2 [20 marks + 5 bonus marks]: Basic Operations of Hive
      In this question, you are asked to repeat Q1 using Hive and then compare the performance between Hive and Pig.
      (a) [Bonus 5 marks] Install Hive on top of your own Hadoop cluster. You can reuse your Hadoop cluster in IEMS 5730 HW#0 and refer to the following link to install Hive 2.3.8 over the master node of your Hadoop cluster.
      https://cwiki.apache.org/confluence/display/Hive/GettingStarted
      Submit the screenshot(s) of your installation process.
      If you choose not to do the bonus question in (a), you can use any well-installed Hadoop cluster, e.g., the IE DIC, or the Hadoop cluster provided by the Google Cloud/AWS [5, 6, 7].
      (b) [20 marks] Write a Hive script to perform exactly the same task as that of Q1 with the same datasets stored in the HDFS. Rerun the Pig script in this cluster and compare the performance between Pig and Hive in terms of overall run-time and explain your observation.
      Hints:
      ● Hive will store its tables on HDFS and those locations needs to be bootstrapped:
      $ hdfs dfs -mkdir /tmp
      $ hdfs dfs -mkdir /user/hive/warehouse
      $ hdfs dfs -chmod g+w /tmp
      $ hdfs dfs -chmod g+w /user/hive/warehouse
      ● While working with the interactive shell (or otherwise), you should first test on a small subset of the data instead of the whole data set. Once your Hive commands/ scripts work as desired, you can then run them up on the complete data set.
       
       Q3 [30 marks + 10 Bonus marks]: Similar Users Detection in the MovieLens Dataset using Pig
      Similar user detection has drawn lots of attention in the machine learning field which is aimed at grouping users with similar interests, behaviors, actions, or general patterns. In this homework, you will implement a similar-users-detection algorithm for the online movie rating system. Basically, users who rate similar scores for the same movies may have common tastes or interests and be grouped as similar users.
      To detect similar users, we need to calculate the similarity between each user pair. In this homework, the similarity between a given pair of users (e.g. A and B) is measured as the total number of movies both A and B have watched divided by the total number of movies watched by either A or B. The following is the formal definition of similarity: Let M(A) be the set of all the movies user A has watched. Then the similarity between user A and user B is defined as:
      𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) = |𝑀(𝐴)∩𝑀(𝐵)| ...........(**) |𝑀(𝐴)∪𝑀(𝐵)|
      where |S| means the cardinality of set S.
      (Note: if |𝑀(𝐴)∪𝑀(𝐵)| = 0, we set the similarity to be 0.)
      The following figure illustrates the idea:
      Two datasets [3][4] with different sizes are provided by MovieLens. Each user is represented by its unique userID and each movie is represented by its unique movieID. The format of the data set is as follows:
      <userID>, <movieID>
      Write a program in Pig to detect the TOP K similar users for each user. You can use the
        
       cluster you built for Q1 and Q2 or you can use the IE DIC or one provided by the Google Cloud/AWS [5, 6, 7].
      (a) [10 marks] For each pair of users in the dataset [3] and [4], output the number of movies they have both watched.
      For your homework submission, you need to submit i) the Pig script and ii) the list of the 10 pairs of users having the largest number of movies watched by both users in the pair within the corresponding dataset. The format of your answer should be as follows:
      <userID A>, <userID B>, <the number of movie both A and B have watched> //top 1 ...
      <userID X>, <userID Y>, <the number of movie both X and Y have watched> //top 10
      (b) [20 marks] By modifying/ extending part of your codes in part (a), find the Top-K (K=3) most similar users (as defined by Equation (**)) for every user in the datasets [3], [4]. If multiple users have the same similarity, you can just pick any three of them.
      (c)
      Hint:
      1. In part (b), to facilitate the computation of the similarity measure as
      defined in (**), you can use the inclusion-exclusion principle, i.e.
      請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

      標(biāo)簽:

      掃一掃在手機打開當(dāng)前頁
    • 上一篇:&#160;ICT239 代做、代寫 java/c/c++程序
    • 下一篇:代寫COMP9334 Capacity Planning of Computer
    • 無相關(guān)信息
      昆明生活資訊

      昆明圖文信息
      蝴蝶泉(4A)-大理旅游
      蝴蝶泉(4A)-大理旅游
      油炸竹蟲
      油炸竹蟲
      酸筍煮魚(雞)
      酸筍煮魚(雞)
      竹筒飯
      竹筒飯
      香茅草烤魚
      香茅草烤魚
      檸檬烤魚
      檸檬烤魚
      昆明西山國家級風(fēng)景名勝區(qū)
      昆明西山國家級風(fēng)景名勝區(qū)
      昆明旅游索道攻略
      昆明旅游索道攻略
    • NBA直播 短信驗證碼平臺 幣安官網(wǎng)下載 歐冠直播 WPS下載

      關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
      ICP備06013414號-3 公安備 42010502001045

      主站蜘蛛池模板: 亚洲国产精品无码专区在线观看| 无码人妻精品一区二区三区久久 | 中文字幕av无码专区第一页| 国产精品无码免费专区午夜| 无码国产精品一区二区免费模式| 精品少妇人妻av无码久久| 亚洲中文字幕无码爆乳av中文| 中文字幕无码日韩专区免费| av大片在线无码免费| 国产AV无码专区亚洲Av| 亚洲av永久无码天堂网| 50岁人妻丰满熟妇αv无码区| 国产福利电影一区二区三区久久老子无码午夜伦不 | 国产成人精品无码播放| 亚洲AⅤ无码一区二区三区在线| 99精品国产在热久久无码| 无码人妻精品一区二区三18禁| a级毛片无码免费真人| 亚洲熟妇无码一区二区三区 | 无码日韩人妻av一区免费| 无码人妻丰满熟妇区免费| 久久久久亚洲?V成人无码| 青青爽无码视频在线观看| 蜜色欲多人AV久久无码| 精品无码日韩一区二区三区不卡| 国产精品无码一区二区三级| 久久久久亚洲AV成人无码| 人妻丰满熟妇AV无码区乱| 亚洲VA成无码人在线观看天堂| 亚洲一级特黄大片无码毛片| 无码国模国产在线无码精品国产自在久国产 | 中文无码制服丝袜人妻av| 日韩经典精品无码一区| 精品久久久久久无码人妻热| 精品一区二区无码AV| 2014AV天堂无码一区| 免费看又黄又无码的网站| 亚洲国产av高清无码| 无码人妻一区二区三区免费| 无码中文人妻在线一区二区三区| 婷婷四虎东京热无码群交双飞视频|