精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

COMP 315 代做、代寫 java 語言編程

時間:2024-03-10  來源:  作者: 我要糾錯



1 Introduction
Assignment 1: Javascript
COMP 315: Cloud Computing for E-Commerce March 5, 2024
A common task in cloud computing is data cleaning, which is the process of taking an initial data set that may contain erroneous or incomplete data, and removing or fixing those elements before formatting the data in a suitable manner. In this assignment, you will be tested on your knowledge of JavaScript by implementing a set of functions that perform data cleaning operations on a dataset.
2 Ob jectives
By the end of this assignment, you will:
• Gain proficiency in using JavaScript for data manipulation.
• Be able to implement various data cleaning procedures, and understand the significance of them. • Have developed problem-solving skills through practical application.
3 Problem description
For this task, you have been provided with a raw dataset of user information. You must carry out the following series of operations:
• Set up a Javascript class in the manner described in Section 4.
• Convert the data into the appropriate format, as highlighted in Section 5
• Fix erroneous values where possible e.g. age being a typed value instead of a number, age being a real number instead of an integer, etc; as specified in Section 6.
• Produce functions that carry out the queries specified in Section 7.
 Data name Title
First name
Middle name Surname Date of birth Age
Email
Note
This value may be either: Mr, Mrs, Miss, Ms, Dr, or left blank.
Each individual must have one. The first character is capitalised and the rest are lower case, with the exception of the first character after a hyphen.
This may be left blank.
Each individual must have one.
This must be in the format of DD/MM/YYYY.
All data were collected on 26/02/2024, and the age values should reflect this.
The format should be [first name].[surname]@example.com. If two individuals have the same address then an ID is added to differentiate them eg john.smith1, john.smith2, etc
Table 1: The attributes that should be stored for each user
         1

4 Initial setup
Create a Javascript file called Data Processing.js. Create a class within that file called Data Processing. Write a function within that class called load CSV that takes in the filename of a csv file as an input, eg load CSV (”User Details”). The resulting data should be saved locally within the class as a global variable called raw user data. Write a function called format data, which will have no variables are a parameter. The functionality of this method is described in Section 5. Write a function called clean data, which will also have no parameters. The functionality of this method is similarly described in Section 6.
5 Format data
Within the function format data, the data stored within raw user data should be processed and output to a global variable called formatted user data. The data are initially provided in the CSV format, with the delimiter being the ’,’ character. The first column of the data is the title and full name of the user. The second and third columns are the date of birth, and age of the user, respectively. Finally, the fourth column is the email of the user. Ensure that the dataset is converted into the appropriate format, outlined in Table 1. This data should be saved in the JSON format (you may use any built in JavaScript method for this). The key for each of the values should be names shown in the ’Data name’ column, however converted to lower case with an underscore instead of a space character eg ’first name’.
6 Data cleaning
Within the function clean data, the data cleaning tasks should be carried out, loading the data stored in formatted user data. All of this code may be written within the clean data function, or may be handled by a series of functions that are called within this class. The latter option is generally considered better practice. Examine the data in order to determine which values are in the incorrect format or where values may be missing. If a value is in the incorrect format then it must be converted to be in the correct format. If a value is missing or incorrect, then an attempt should be made to fill in that data given the other values. The cleaned data should be saved into the global variable cleaned user data.
7 Queries
Often, once the data has been processed, we perform a series of data analysis tasks on the cleaned data. Each of these queries are outlined in Table 2. Write a function with the name given in the ’Function name’ column, that carries out the query given in the corresponding ’Query description’. The answer should be returned by the function, and not stored locally or globally.
 Function name
most common surname average age
youngest dr
most common month
Query description
What is the most common surname name?
What is the average age of the users, given the values stored in the ’age’ column? This should be a real number to 3 significant figures.
Return all of the information about the youngest individual in the dataset with the title Dr.
What is the most common month for individuals in the data set?
        percentage titles
 What percentage of the dataset has each of the titles? Return this in the form of an array, following the order specified in the ’Title’ row of Table 1. This should included the blank title, and the percentage should be rounded to the nearest integer using bankers rounding.
  percentage altered
 A number of values have been altered between formatted user data and cleaned user data. What percentage of values have been altered? This should be a real number to 3 significant figures.
  Table 2: The queries that should be carried out on the cleaned data
2

8 Marking
The marking will be carried out automatically using the CodeGrade marking platform. A series of unit tests will be ran, and the mark will correspond with how many of those unit tests were successfully executed. Your work will be submitted to an automatic plagiarism/collusion detection system, and those exceeding a threshold will be reported to the Academic Integrity Officer for investigation regarding adhesion to the university’s policy https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix L cop assess.pdf.
9 Deadline
The deadline is 23:59 GMT Friday the 22nd of March 2024. Late submissions will have the typical 5% penalty applied for each day late, up to 5 days. Submissions after this time will not be marked. https: //www.liverpool.ac.uk/aqsd/academic-codes-of-practice/code-of-practice-on-assessment/
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫 CSSE7030 Connect 4
  • 下一篇:代做ACS61012、代寫ACS61012 Machine Vision
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      成年人小视频在线观看| 欧美69精品久久久久久不卡| 97超碰资源站| 一区二区三区久久久久| 欧美精品久久久久性色| 黄色片一区二区| 国产青青草视频| av综合在线观看| www.黄色片| 中文字幕日韩国产| 中文字幕 日韩 欧美| 无码人妻久久一区二区三区蜜桃 | 秋霞精品一区二区三区| 国产精品麻豆入口| 国产成人麻豆精品午夜在线| www.av日韩| www男人天堂| www.久久久久久| 国产67194| 国产18精品乱码免费看| 91日韩中文字幕| 国产福利在线免费| 国产精久久久久久| 国产午夜精品理论片在线| 国产美女免费网站| 国产一区二区三区中文字幕| 国产又黄又爽视频| 精品视频久久久久| 免费在线不卡视频| 亚洲av熟女高潮一区二区| 在线观看国产黄| 99re国产在线| 国产精品18在线| 久久久99精品| 午夜福利视频一区二区| 中文字幕乱码av| 懂色av一区二区三区四区| 国产亚洲成人av| 欧美精品一区二区蜜桃| 视频一区二区三区四区五区| 亚洲天堂男人av| 丰满人妻一区二区三区四区 | 日日骚av一区二区| 伊人久久一区二区三区| 一级黄色片免费| 国产免费美女视频| 日本黄色一级网站| 3d动漫精品啪啪一区二区下载 | 亚洲va天堂va欧美ⅴa在线| 亚洲少妇一区二区| 激情五月婷婷小说| 亚洲av成人无码久久精品| 99热这里是精品| 久久久久久久久久久97| 婷婷社区五月天| 99久久精品久久亚洲精品| 久久aaaa片一区二区| 污视频在线免费观看| 国产精品成人aaaa在线| 色男人天堂av| 国精产品视频一二二区| 亚洲AV午夜精品| 国产小视频精品| 午夜精品福利在线视频| 国产欧美一区二| 亚洲精品成人电影| 麻豆视频免费在线播放| 亚洲天堂999| 日本一级黄色录像| 丰满少妇一区二区三区| 日韩一级中文字幕| 国产污视频网站| 亚洲精品91在线| 欧美日韩国产黄色| 国产精品毛片一区二区| 亚洲高清av一区二区三区| 男操女免费网站| 国产精品久久久久精| 网爆门在线观看| 欧美日韩精品亚洲精品| 国产精品久久久久久久久久久久久久久久久久 | 欧美 日韩 国产 精品| 亚洲一区二区蜜桃| 日韩精品一卡二卡| 精品国产乱码久久久久夜深人妻| 99国产精品免费视频| 天天干天天做天天操| 久久久久亚洲AV成人| 国产成人一区二区三区影院在线| 无限资源日本好片| 欧美日韩在线国产| 国产精品入口麻豆| ass极品水嫩小美女ass| 亚洲精品久久久久久无码色欲四季| 日韩色图在线观看| 精品无码久久久久久久| 国产精品久久免费观看| 99日在线视频| 亚洲特级黄色片| 亚洲欧美另类综合| 亚洲黄色在线播放| 亚洲国产精品二区| 亚洲天堂视频网| 99精品在线播放| av无码精品一区二区三区宅噜噜| 亚洲一区二区三区四区五区| 亚洲美女综合网| 97精品人妻一区二区三区香蕉| 亚洲欧美日韩网站| 亚洲精品成人无码| 亚洲国产精品18久久久久久| 中文成人无字幕乱码精品区| 在线观看岛国av| 中文字幕在线国产| 亚洲熟女少妇一区二区| 91精品人妻一区二区| 亚洲精品无码久久久| 亚洲一区中文字幕永久在线| 一级aaaa毛片| а天堂中文在线资源| 国产女主播喷水视频在线观看| 丰满少妇一区二区| 国产裸体永久免费无遮挡| 国产免费黄色片| 免费观看成人毛片| 日本一级淫片免费放| 一区二区国产欧美| 亚洲一区二区在线视频观看| 91激情在线观看| 黄色一级片免费在线观看| 精品国产视频一区二区三区| 欧美日韩精品在线观看视频 | 日本欧美www| 天天操天天舔天天射| 亚洲 欧美 成人| 97在线公开视频| 国产美女免费视频| 蜜桃久久精品成人无码av| 五月激情六月丁香| 国产97免费视频| 欧美三级午夜理伦三级富婆| 在线免费观看av网| 国产一级片播放| 亚洲成人av网址| 国产精品成人aaaa在线| 久久精品无码专区| 中文亚洲av片在线观看 | 午夜国产小视频| 成人久久久精品国产乱码一区二区 | 国产成人黄色网址| 欧美熟妇精品一区二区| 中文字幕一区二区在线视频| 国产一区二区三区精品在线| 五月天婷婷视频| 国产三级精品三级在线| 三级小视频在线观看| 成人免费无码大片a毛片| 久久国产露脸精品国产| 中文乱码字幕高清一区二区| 国产美女免费无遮挡| 熟妇无码乱子成人精品| 一二三区免费视频| 欧洲美一区二区三区亚洲| 亚洲精品视频91| 日本不卡一区二区在线观看| www.黄色av| 色网站免费观看| 国内毛片毛片毛片毛片毛片| 一区二区三区少妇| 国产网址在线观看| 亚洲天堂视频一区| 色欲av伊人久久大香线蕉影院 | 久久午夜鲁丝片| 成人高潮片免费视频| 日韩精品你懂的| 加勒比在线一区| www.av视频在线观看| 五月婷婷在线播放| 日本黄色一级网站| 欧美 日韩 综合| 久久午夜夜伦鲁鲁一区二区| 国产精品久久久久久久久毛片| 亚洲成人一级片| 色香蕉在线视频| 欧美在线 | 亚洲| 你懂的国产在线| 久久午夜夜伦鲁鲁片| 国产精品suv一区| 91tv国产成人福利| 在线观看一区二区三区四区| 日本乱子伦xxxx| 欧美福利在线视频| 免费一级做a爰片久久毛片潮| 国产一级一片免费播放放a| 一级片免费在线播放| 亚洲午夜精品一区| 一级黄色免费毛片| 9999热视频| 国产激情视频在线播放| 国产av精国产传媒|