精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

代做EL2106  、代寫Signals and Systems    

時(shí)間:2024-03-09  來源:  作者: 我要糾錯(cuò)



Academic Year: 2023/24
Assessment Introduction: 
Course: 
BEng (Hons) Electronic Engineering    Module Code: EL2106        
Module Title: Signals and Systems    

Title of the Brief: 
Fourier Series for Synthesis and Analysis of Periodic Signals    Type of assessment: Coursework

This Assessment Pack consists of a detailed assignment brief, guidance on what you need to prepare, and information on how class sessions support your ability to complete successfully. You’ll also find information on this page to guide you on how, where, and when to submit. If you need additional support, please make a note of the services detailed in this document. 

How, when, and where to submit:
The deadline for this assessment is 22nd March 2024 at 23.59 via the submission zone found the EL2106 Blackboard area - Please note that this is the final time you can submit – not the time to submit!
Your work needs to be submitted via the Turnitin link on Blackboard, the link will be visible to you on: 12th December 2023 
Feedback will be provided by: 26th April 2024
You should aim to submit your assessment in advance of the deadline.
Note: If you have any valid mitigating circumstances that mean you cannot meet an assessment submission deadline and you wish to request an extension, you will need to apply online, via MyUCLan with your evidence prior to the deadline. Further information on Mitigating Circumstances via this link.
We wish you all success in completing your assessment. Read this guidance carefully, and any questions, please discuss with your Module Leader or module team. 

Additional Support available: 
All links are available through the online Student Hub
1.Academic support for this assessment will be provided by contacting Wei Quan WQuan@uclan.ac.uk 
2.Our Library resources link can be found in the library area of the Student Hub or via your subject librarian at SubjectLibrarians@uclan.ac.uk. 
3.Support with your academic skills development (academic writing, critical thinking and referencing) is available through WISER on the Study Skills section of the Student Hub.
4.For help with Turnitin, see Blackboard and Turnitin Support on the Student Hub 
5.If you have a disability, specific learning difficulty, long-term health or mental health condition, and not yet advised us, or would like to review your support, Inclusive Support can assist with reasonable adjustments and support. To find out more, you can visit the Inclusive Support page of the Student Hub.
6.For mental health and wellbeing support, please complete our online referral form, or email wellbeing@uclan.ac.uk. You can also call 01772 893020, attend a drop-in, or visit our UCLan Wellbeing Service  Student Hub pages for more information.
7.For any other support query, please contact Student Support via studentsupport@uclan.ac.uk. 
8.For consideration of Academic Integrity, please refer to detailed guidelines in our policy document . All assessed work should be genuinely your own work, and all resources fully cited.  
9.For this assignment, you are not permitted to use any category of AI tools.

Preparing for your assignment.
Ensure that you fully understand the requirements for the assessment and what you are expected to complete. The assignment will be introduced in the lecture session where you can ask any questions, you can also ask for clarification by contacting the module team.

The following module learning outcomes will be assessed in this assignment: 

Use time domain and frequency-domain representations of signals and systems to analyse signal and system characteristics and system responses graphically and mathematically. 
Implement relevant processing techniques, such as Fourier analysis and s-plane analysis, using software tools such as spreadsheets or MATLAB, and demonstrate an understanding of the practical results acquired from the software-based implementations.


Please read over the guide to writing a technical document https://www.theiet.org/media/5182/technical-report-writing.pdf and ensure that you fully understand the requirements of the assessment. There will be a lecture session on the assignment and writing a technical document. 

Ensure that you research and read into the subject area before writing the report so that you have a good background understanding to the subject area.


Assignment Brief

For all stages, select appropriate ranges (time, frequency etc.) for the plots to show the appropriate features of the signals and spectra.  Label both axes on all plots.  Throughout this assignment, the sampling frequency for all signals should be 200 kHz. 
 
1)Periodic Discrete-Time Signal Generation (25 marks) 
Generate a set of discrete-time sinusoids using MATLAB.  The signals should have a specified amplitude and phase (your choices, you may decide to experiment with these), and a frequency as specified below.  Plot the sample values against time and observe the resulting waveform.  Use a suitable time range so as to show the relevant features of the signal.  Comment on whether the observed waveform corresponds to the expected waveform and explain any significant differences. (HINT: a key word that you may wish to investigate and explain is ‘aliasing’). 

Use the following values (individually) for the frequency of the sinusoid: 1 kHz, 10 kHz, 45 kHz, 55 kHz, 90 kHz, 99 kHz. 

2)Fourier Synthesis for Periodic Signals (25 marks) 
Synthesise periodic signals using MATLAB, each with a fundamental frequency of 100 Hz, using a d.c. component (a0), and a sum of ‘cos’ terms (with amplitudes given by the ak coefficients) and ‘sin’ terms (with amplitudes given by the bk coefficients).  Repeat the synthesis of these signals using MATLAB. 

The synthesis equation is: 


The ak and bk coefficients should be selectable by the user, and the signals should be synthesised with two different harmonic ranges: 

(a) from d.c. up to and including the 10th harmonic (i.e. N = 10). 

(b) from d.c. up to and including the 30th harmonic (i.e. N = 30). 

Use the MATLAB program created above, with the two harmonic ranges, to synthesise the following signals: 
(i)A signal f1(t) of fundamental frequency 200 Hz for which a0 = 5 V, and ak and bk are defined by the 
equations below:

                  

(ii)An approximation of square wave of amplitude 10 V and fundamental frequency 200 Hz, for which you should identify formulae for a0, ak and bk using Fourier series analysis as discussed in the EL2106 classes. 



3)Fourier Analysis for Quasi-Periodic Signals (40 marks) 
A different sampled signal will be provided (by another MAT file) to each student on or before 23rd January 2024.  The signal has frequency 250 Hz, sampled at 100 kHz.  Three practice signals (periodic and quasi-periodic) are available on Blackboard.  Each file will contain 2000 samples of the signal, covering five cycles of the quasi-periodic signal (400 points per cycle).  Note that slight differences are apparent between each ‘cycle’ of the quasi-periodic signals. 

(a) Create a MATLAB program to perform Fourier analysis of the signal from d.c. up to and including the 20th harmonic.  The analysis should include all 2000 points provided, but the calculations should be based on the correct fundamental frequency (i.e. 1 cycle is specified by 400 points corresponding to a fundamental frequency of 250 Hz).  Include in your report a table listing the magnitude (Fk) and phase (φk) of each of the 25 frequency components.  Evaluate the d.c. component of the signal and identify the six dominant a.c. frequency components (i.e. those with the four largest magnitudes) present in your signal. 

(b) Synthesise the signal using only the d.c. value and the six dominant frequency components, using the magnitude and phase values obtained from your analysis. 

(c) Subtract the synthesised signal from part (b) from the original signal (provided) and observe and explain the resulting difference signal.  Calculate the RMS value of the difference signal and express this as a value in dB relative to the RMS value (over all five cycles) of the original signal provided.


Word limit: A maximum of 1000 words (see notes below for further information).

Technical Report Writing

To complete the report, you will have to thoroughly research the area using reliable sources and precisely reference where your information and statements are from. The aim of the report is to be clear, concise and convey technical information to the reader, note that the reader is familiar and experienced in the area. Ensure that you write your report for this audience. 

A guide on writing a technical document can be found at the following (this will also be uploaded to blackboard): 

https://www.theiet.org/media/5182/technical-report-writing.pdf

Please read over the above document to ensure that you are clear on what a technical report is and know what you are required to complete, note the above is a guide not an explicit standard you will be required to ensure that your technical report contains the relevant information presented correctly for the reader.

Ensure that you research and read into the subject area before writing the report so that you have a good background understanding to the subject area. You will need to provide a short report, which shows the calculation of each tasks in Marking Criteria and Weighting section below with an appropriate assumption, description and comments, no longer than 1,000 words. You should use the guideline below to structure your report. For the final reporting submission, make sure that each page is marked with the date of completion, the page number, and the total number of pages submitted.  Make sure that the front page of your submission has this information displayed prominently along with the module name and number and assignment title. Submit your reporting material with a single Word file through EL2106 Blackboard submission link with Matlab code attached in the back of the file. Your work must be referenced using Harvard Referencing system available here: https://v3.pebblepad.co.uk/v3portfolio/uclan/Asset/View/Gm3mmGk6sM3RgHZnjGfh7mm6pM. 

Further information to support your development will be available to view on assignment briefing session and Blackboard.



Notes on Wordcount and Referencing

For good marks and given the limited wordcount you should produce work that is: accurate; thorough; well-argued; clear; accurately referenced; relevant and written in correct (UK) English grammar and spelling. You may include figures and tables with short captions (25 words each) and a list of references without affecting the overall word count. Remember that you have limited words so ensure that you “stick to the point” and do not get into detail on superficial elements. 

Ensure that you include references when discussing technical facts and statements on the technology used. You must reference all your sources of information. These should be cited in the appropriate part of the report and fully identified to meet the Harvard referencing standard in a list at the end. Website articles must be properly referenced to be considered as legitimate references.


Presentation of assignment work

Except where specifically stated in the assignment brief, assignment work submissions should be word-processed, in Microsoft Word format, with a footer comprising: your module code; date; page number. Your work needs to be submitted via the Turnitin link on Blackboard.

The following module learning outcomes will be assessed in this assignment: 
Use time domain and frequency-domain representations of signals and systems to analyse signal and system characteristics and system responses graphically and mathematically. 
Implement relevant processing techniques, such as Fourier analysis and s-plane analysis, using software tools such as spreadsheets or MATLAB, and demonstrate an understanding of the practical results acquired from the software-based implementations.
Marking Criteria and Weighting
Your submission will be marked in accordance with the following marking scheme:
Item    Weight (%)    Model answer criteria
1.Periodic Discrete-Time Signal Generation    25    Neat diagram, clearly presenting the waveforms in MATLAB with appropriate descriptions and comments on the waveforms generated.
2.Fourier Synthesis for Periodic Signals    25    Concise and accurate demonstration on the process of calculation for the synthesised signals, appropriately referenced for the formula where required.
3.Fourier Analysis for Quasi-Periodic Signals    40    Concise and accurate demonstration on the process of calculation for the given signal/waveform. Accurate description of the results of calculation. Neat diagram for presenting the synthesised signals in MATLAB. 
4.Presentation    10    Presentation requirements met in full. Concise, complete and well-structured documentation with correct use of English throughout.  Neat diagrams, clearly presented.  Contents page and page numbers.
Total    100    

Feedback Guidance:
Reflecting on Feedback: how to improve.
From the feedback you receive, you should understand:
The grade you achieved.
The best features of your work.
Areas you may not have fully understood.
Areas you are doing well but could develop your understanding. 
What you can do to improve in the future - feedforward.

Use the WISER: Academic Skills Development service. WISER can review feedback and help you understand your feedback. You can also use the WISER Feedback Glossary
Next Steps:
List the steps have you taken to respond to previous feedback.
Summarise your achievements 
Evaluate where you need to improve here (keep handy for future work):
請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫B(tài)31DG、代做C/C++程序語言
  • 下一篇:CSC8208代做、代寫Java/c++編程設(shè)計(jì)
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級(jí)風(fēng)景名勝區(qū)
    昆明西山國家級(jí)風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗(yàn)證碼平臺(tái) 理財(cái) WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      少妇一级淫免费放| 少妇人妻精品一区二区三区| 99免费在线视频| 免费在线黄色网| 国产精品成人aaaa在线| 无码人妻aⅴ一区二区三区玉蒲团| 国产一级淫片免费| 亚洲精品77777| 无码精品视频一区二区三区| 六月婷婷中文字幕| 久久久精品人妻无码专区| 99久久99久久久精品棕色圆 | 久久国产精品国产精品| 91在线视频国产| 亚洲天堂久久新| 中文字幕在线2021| 一区二区三区午夜| 香蕉久久国产av一区二区| 日韩欧美黄色网址| 日韩av一卡二卡三卡| 好吊视频一区二区三区| av在线免费在线观看| 亚洲av鲁丝一区二区三区| 日本免费不卡视频| 日韩免费av一区| 日本一区二区在线观看视频| 人妻精品一区一区三区蜜桃91 | 天堂av2020| 欧美日韩精品一区二区三区视频播放 | 六月丁香激情综合| 精品少妇爆乳无码av无码专区| 国产精品果冻传媒| 国产免费中文字幕| 久久福利小视频| 蜜臀尤物一区二区三区直播| 男人网站在线观看| 色婷婷视频在线| 一区二区www| 杨幂一区二区国产精品| 91亚洲欧美激情| av中文字幕播放| 国产特黄大片aaaa毛片| 国产一级做a爰片久久| 欧美极品视频在线观看| 欧美男人亚洲天堂| 在线免费av片| 99久久免费国产精精品| 国产wwwwwww| 久久人人爽人人爽人人片av免费| 欧美福利在线视频| 婷婷色一区二区三区| 在线免费观看av网| www.成人黄色| 久久久久久久久毛片| 欧美性猛交xxxx乱大交hd| 欧美 日本 国产| 亚洲成av人片在线观看无| 亚洲熟女少妇一区二区| 韩国av免费观看| 亚洲欧美手机在线| 国精产品一区一区三区免费视频| 九九热99视频| 欧美大片xxxx| 亚洲黄色免费观看| 狠狠干狠狠操视频| 午夜精品福利在线视频| 91插插插插插插插插| 国产又粗又猛视频免费| 色一情一交一乱一区二区三区| 亚洲美女爱爱视频| 国产视频久久久久久| 欧美久久久久久久久久久久| 在线观看中文字幕网站| 精品人妻在线播放| 亚洲国产精品视频在线| 精品欧美一区二区久久久久| 中文字幕精品久久久| 国产视频1区2区3区| 午夜久久福利视频| 国产又黄又猛又粗又爽的视频 | 亚洲欧洲日本精品| 久久露脸国语精品国产91| 亚洲精品一级片| 欧美亚韩一区二区三区| 成人h动漫精品一区二区无码| 手机看片福利在线| 精品午夜福利视频| 999精品国产| 五月激情丁香网| 久久久精品人妻无码专区| 91热这里只有精品| 香蕉视频911| 秋霞午夜鲁丝一区二区| 国产一级二级三级| 91久久国产综合| 伊人国产在线视频| 姝姝窝人体www聚色窝| 久久久久久久黄色| 国产黑丝一区二区| 岛国av免费观看| 99草在线视频| 亚洲五月天综合| 中文文字幕一区二区三三| 久久久久久国产精品日本| 国产a免费视频| 69av视频在线观看| 中文 日韩 欧美| 色窝窝无码一区二区三区成人网站| 久久人人爽人人片| 欧美 日韩 综合| 日本一区二区三区四区五区| 久久亚洲天堂网| 久久国产视频播放| 黄色一级a毛片| 国产又粗又长免费视频| 国产三级视频网站| 国产人妻人伦精品1国产丝袜 | 中文在线观看av| 日韩乱码在线观看| 四虎国产精品免费| 熟女av一区二区| 天堂网视频在线| 这里只有久久精品视频| 中文字幕av片| 91精品久久久久久久久久久久| 中文字幕在线播放一区| 中国xxxx性xxxx产国| 中文字幕 日韩有码| 亚洲精品久久久久久| 成人1区2区3区| 国产 欧美 日韩 在线| 国产视频在线免费观看| 精品久久久久久久无码 | 亚洲 日本 欧美 中文幕| 姝姝窝人体www聚色窝| 中文字幕 国产精品| 不卡中文字幕在线观看| 国产毛片一区二区三区va在线| 精品毛片一区二区三区| 男人天堂视频网| 亚洲av色香蕉一区二区三区 | 无码人妻黑人中文字幕| 亚洲精品久久久狠狠狠爱| av黄色在线播放| 国产精品9191| 女同毛片一区二区三区| 中文字幕在线播放日韩| 国产午夜在线播放| 免费一级suv好看的国产网站| 少妇性l交大片7724com| 91丨porny丨九色| 精品人妻aV中文字幕乱码色欲| 日韩欧美国产成人精品免费| 91欧美视频在线| 老鸭窝一区二区| 中文字幕在线观看欧美| 国产性xxxx高清| 天天干天天综合| 亚洲综合在线网站| 好吊色一区二区| 中文字幕av一区二区三区人妻少妇 | 国产成人av片| 精品欧美一区二区精品少妇| 搡老熟女老女人一区二区| 亚洲欧美精品一区二区三区| 国产一区二区在线观看免费视频| 少妇av一区二区| 国产黄色片网站| 亚洲AV无码片久久精品| 国产视频一二三四区| 日韩成人一区二区三区| av大全在线观看| 天天操狠狠操夜夜操| va视频在线观看| 亚洲va久久久噜噜噜无码久久| 国产原创视频在线| 亚洲欧洲综合网| 日韩无码精品一区二区三区| 国产精品久久久久久69| 在线观看日本一区二区| 黄色aaa级片| 国产91av在线播放| 一区二区三区 日韩| 六月丁香在线视频| 国产三级短视频| 手机毛片在线观看| 国产麻豆剧传媒精品国产| 亚洲av无码一区二区乱子伦| 蜜桃av免费看| 久久精品第一页| 国产激情视频在线播放| 亚洲天堂国产视频| 婷婷综合在线视频| 日本精品久久久久久| 蜜桃久久精品成人无码av| 黄色一级片免费在线观看 | 国产三级小视频| 91福利免费观看| 在线国产视频一区| 中文字幕乱码人妻无码久久|