精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

代寫代做Project 3 - CanvasList CS 251

時間:2024-03-02  來源:  作者: 我要糾錯


Project 3 - CanvasList

CS 251, Spring 2024

In this project (and the next!) we will build our own versions of data structures. By the end of this project, you will...

● Gain an understanding of the usage of a linked list in data structures

● Have practiced manipulating a linked list in various ways

● Understand the power of polymorphism in an object-oriented language

Remember, if you get stuck for more than 30 minutes on a bug, you should come to office hours. You should also come to office hours if you have questions about the guide or starter code, even if you haven’t written any code yet.

Restrictions

● You may not include additional C++ libraries to implement CanvasList or shapes. The only included library for CanvasList is <iostream>; and the only included library for shapes is <string>.

○ It’s fine to include libraries to write tests.

● You will need to use classes, pointers, and new. Do not use malloc, we’re not writing C.

● You may modify shape.cpp, canvaslist.cpp, and canvaslist_tests.cpp freely.

● You may modify canvaslist.h only to add additional private member functions. You

may not add additional member variables (public or private), or additional public member

functions.

● See Memory Safety & valgrind.

Logistics

There are 2 main things that are different about this project:

1. zyBooks does not easily support using valgrind in its autograder. It also does not support reusing a single compilation target to run multiple tests. Therefore, although you will have a zyBooks workspace and starter code, you will submit to Gradescope to receive autograder feedback. We expect you to make multiple submissions.

2. The way many of our tests are written gives away significant parts of what you will be working on. As such, we do not have a public test suite. Instead, we’ll give detailed failure messages to the extent possible.

Due:

● Gradescope: Monday 3/4, 11:59 PM

○ canvaslist.h

 

 ○ shape.cpp

○ canvaslist.cpp

○ canvaslist_tests.cpp

● Use grace tokens:

https://docs.google.com/forms/d/e/1FAIpQLSctqCl9ZYt52IKJZGnyrrJhuW5DMN1ZCJI7d 9C_Cutm3OliqA/viewform

○ Grace tokens should be requested by 5 PM the day before. For example, if you intend to submit the project by 11:59 PM on Tuesday 3/5, you must submit the form by 5 PM on Monday 3/4. If you submit later, you will need to wait until we process it to be able to receive autograder feedback from Gradescope.

○ This requires setting up a UIC Google account. If you have not yet done so, visit https://learning.uic.edu/resources/virtual-collaboration/google-workspace/.

Testing

We will continue studying and practicing testing, this time on a data structure. This raises an interesting question: in order to test the functions that tell us what’s inside the data structure, we have to add data. But then we’re assuming that the methods to add data work correctly! We’ll have to be ok with the fact that we’re testing two functions at once. Later, we can assume that these work correctly.

This time, we’re going to take a slightly different approach to evaluating your tests. We have many buggy implementations. Your task is to write tests that expose these buggy implementations! The bugs may be in CanvasList, Shape, or in one of the derived classes. You’ll receive credit for each buggy implementation that fails your tests. This will happen when you submit to Gradescope.

Keep in mind that the correct implementation must pass your tests to receive any credit – no writing EXPECT_TRUE(false), for example. To aid you in checking your own test cases, we’ve provided solution “object files”: canvaslist_solution.o and shape_solution.o.

In zyBooks, use make run_solution_tests to run your tests on the course staff’s correct solution.

Memory “Ownership”

When we pass pointers around as arguments or return values, it’s important to track what part of the program is responsible for freeing the memory associated with that pointer. We call this concept “ownership” – whomever “owns” a pointer is responsible for freeing it.

This isn’t actually enforced by the compiler or anything – it’s an informal model that helps us keep track of when to free things. Here’s an example:

 

 class MyClass {

 public:

  int* ptr;

  MyClass() {

ptr = new int;

*ptr = 10; }

  ~MyClass() {

    if (ptr != nullptr) {

delete ptr; }

  }

  int* getPtr() {

    // Who owns this now?

return ptr; }

};

int main() {

  MyClass mc;

  int* p = mc.getPtr();

  delete p;

}

Here, we have code that eventually ends up with 2 pointers in different places that point to the same memory. This is a problem! The delete p; in main and the destructor ~MyClass() both try to delete the same underlying memory, causing a double free error.

We need to make sure only one of them runs – but which one? This is where the concept of documenting ownership comes in handy. Here’s two examples, either of which will prevent the double free error.

     // MyClass keeps ownership, caller

// must not free returned ptr

int* getPtr() {

return ptr; }

int main() {

 // Ownership transferred to caller,

// caller must free returned ptr

int* getPtr() {

  int *ret = ptr;

  ptr = nullptr;

  return ret;

}

int main() {

 

    MyClass mc;

  int* p = mc.getPtr();

}

   MyClass mc;

  int* p = mc.getPtr();

  delete p;

}

 In the example on the left, MyClass keeps ownership and will free ptr in its destructor – according to the method comment, the caller must not free the returned pointer. There’s nothing stopping the caller from doing so, though, so it’s just documentation.

In the example on the right, MyClass gives up or transfers ownership. According to the documentation, the caller must free the returned pointer. Therefore, the implementation sets ptr = nullptr; inside the class, preventing the destructor from deleting it. Outside the class, in main, the pointer is deleted. Again, there’s nothing guaranteeing the caller deletes the pointer.

If this all seems difficult to keep track of, you’re right! It’s super important though, and that’s why C++11 added a feature called “smart pointers”. These help keep track of ownership for us, and lets the language take care of when dynamically allocated memory gets free’d. Unfortunately, they’re a bit too much to cover in 251 and we won’t see them this term.

Memory Safety & valgrind

In this class, we care a lot about writing correct C++ code. One aspect of correctness that is much more relevant when working with pointers is memory safety – does our program only access memory that it is allowed to? Programs that have out-of-bounds accesses or use-after-frees or other memory issues are broken programs.

On the other hand, memory leaks aren’t as bad, but they still indicate poor “hygiene” and loose memory management. You’ll definitely have memory leaks until you complete the destructor. Even then, you may have memory leaks due to mismanagement. As such, we’ll have a flat score item for writing a program that has no memory leaks and passes at least one test.

  Some of the functions you will implement will specify how to handle pointer ownership, and our tests expect these to be implemented properly. Make sure you pay attention to this, so you don’t get double frees or memory leaks!

   We care so strongly about this, in fact, that a program with memory errors, such as out-of-bounds accesses or use-after-frees, will receive no credit for the corresponding test. It does not matter whether your code might be correct if we ignore the undefined behavior.

 We treat these as fatal, program-ending errors, because they are.

 

 We will run all tests using valgrind to detect and report this behavior. MacOS doesn’t have valgrind – see Memory Safety and MacOS for more information.

Memory Safety Tips and Tricks

1. Apply the above section – whose job is it to free the memory?

2. Before you follow a pointer, check whether it’s nullptr.

3. If you delete something, make sure you update any pointers to it to either be a different

valid pointer or nullptr. There might be multiple pointers to the same thing!

Memory Safety and MacOS

MacOS doesn’t have valgrind. While we can use leaks, this doesn’t catch undefined behavior and makes the program incompatible with AddressSanitizer (another way of catching undefined behavior). We have a few options, none of them do everything that valgrind can, and they get progressively sketchier. (I have an M2 Mac for personal use I’m experimenting with – I really have no idea how M1 or Intel Macs behave.)

● Run your tests in zyBooks, which has valgrind. (Strongly recommended – sorry . You can still develop and do a lot of testing locally, but ensuring memory safety is easiest to do in a true Linux environment.)

These later bullets require more knowledge with the terminal and your computer, and we don’t know whether they work. We didn’t build these into the Makefile, and you’re on your own if you want to try them.

● If you have a non-M1/M2 Mac, https://github.com/LouisBrunner/valgrind-macos seems promising, but apparently has some false positives. I haven’t tested it; I don’t have an x86 Mac.

● Run all tests twice: once when compiling with AddressSanitizer (-fsanitize=address), and once under leaks. Even then, this misses when we try to read uninitialized memory!

● Use brew install llvm, and switch to using the newly installed /opt/homebrew/opt/llvm/bin/clang++ (or maybe /usr/local/opt/llvm/bin/clang++). Then, we can compile our program with -fsanitize=address and run with the environment variable ASAN_OPTIONS=detect_leaks=1 to both detect leaks and see undefined behavior. Of course, this still doesn’t see uninitialized memory errors.

● Docker just for valgrind??? (This just sounds cursed.)

 ���

 

 Tasks

Task: Shape

First, we’ll need to implement the Shape base class. See the documentation in shape.h, and write your implementation in shape.cpp.

The default constructor for Shape should set x and y to 0. Task: Testing

As described above, we’re evaluating your testing differently this project.

See canvaslist.h for documentation and a description of what each method does. We strongly recommend writing your test suite first. Place your tests in canvaslist_tests.cpp. Remember to use EXPECT_EQ (keeps going when it fails) or ASSERT_EQ (stops the test when it fails).

You can check that your tests pass on the solution in zyBooks by using the make run_solution_tests command. If your tests don’t pass on the solution, they’re probably wrong!

When you submit to Gradescope, we will run your tests on a correct solution. If the correct solution passes your tests, we will then run your tests on many broken solutions, to see how many your tests “expose”. If you are struggling with writing tests for a particular broken solution, see Project3BrokenSolutionsOverview foravaguedescriptionofwhereeachisbroken.

Task: CanvasList

CanvasList is a singly linked list, where the nodes are of type ShapeNode. You’ll see that the ShapeNode is a class that contains 2 member variables: a Shape* (data pointer), and a ShapeNode* (pointer to the next node).

A reminder of the restrictions from above:

● You may modify canvaslist.h only to add additional private member functions.

● You may not add additional member variables (public or private), or additional public

member functions.

See canvaslist.h for documentation and a description of what each method does. All your function definitions should be in canvaslist.cpp. We recommend completing the methods in the following order:

1. Default constructor

 

 2. empty, size, front

a. Your size function should be one line long. If it is not one line long, you are

probably doing something that is setting you up for tricky bugs in the future.

3. push_front, push_back

4. draw, print_addresses

5. Copy constructor 6. find, shape_at 7. insert_after

8. pop_front, pop_back 9. clear

10. Assignment operator 11. Destructor

12. remove_at

13. remove_every_other

Task: Other Shapes

Finally, we take advantage of the fact that our CanvasList stores pointers to various shapes to use polymorphism. Implement the remaining derived classes:

● Rect

● Circle

● RightTriangle

If a member variable is not given as an argument to a derived class’s constructor, set it to 0. Then, try writing tests that insert these into your CanvasList – we don’t have to write any

additional code to make the CanvasList work with them!

The RightTriangle documentation has a typo. The as_string function should have the line, “It’s a Right Triangle at x: 1, y: 2 with base: 3 and height: 4”.

 

 Example Execution

See the (commented) code in main.cpp. You can use this file to experiment with your own linked list methods outside of a test. When enough of the methods and the extra derived classes are properly implemented, you’d see this output. Note that the addresses will be different, but the format should be the same.

List size: 0

Front: 0

Adding Shape to the front

List size: 1

It's a Shape at x: 1, y: 3

Adding Shape to the front

List size: 2

It's a Shape at x: 4, y: 6

It's a Shape at x: 1, y: 3

Adding Shape to the back

List size: 3

It's a Shape at x: 4, y: 6

It's a Shape at x: 1, y: 3

It's a Shape at x: 4, y: 6

Adding Circle to the front

List size: 4

It's a Circle at x: 2, y: 4, radius: 3

It's a Shape at x: 4, y: 6

It's a Shape at x: 1, y: 3

It's a Shape at x: 4, y: 6

Adding Rectangle to the back

List size: 5

It's a Circle at x: 2, y: 4, radius: 3

It's a Shape at x: 4, y: 6

It's a Shape at x: 1, y: 3

It's a Shape at x: 4, y: 6

It's a Rectangle at x: 0, y: 0 with width: 0 and height: 10

Adding Right Triangle to the front

List size: 6

It's a Right Triangle at x: 1, y: 2 with base: 3 and height: 4

It's a Circle at x: 2, y: 4, radius: 3

It's a Shape at x: 4, y: 6

It's a Shape at x: 1, y: 3

It's a Shape at x: 4, y: 6

It's a Rectangle at x: 0, y: 0 with width: 0 and height: 10

 

 Deleting last element

List size: 5

It's a Right Triangle at x: 1, y: 2 with base: 3 and height: 4

It's a Circle at x: 2, y: 4, radius: 3

It's a Shape at x: 4, y: 6

It's a Shape at x: 1, y: 3

It's a Shape at x: 4, y: 6

Inserting Shape after index 1

Original:

It's a Right Triangle at x: 1, y: 2 with base: 3 and height: 4

It's a Circle at x: 2, y: 4, radius: 3

It's a Shape at x: 4, y: 6

It's a Shape at x: 1, y: 3

It's a Shape at x: 4, y: 6

Updated Original:

It's a Right Triangle at x: 1, y: 2 with base: 3 and height: 4

It's a Circle at x: 2, y: 4, radius: 3

It's a Shape at x: 3, y: 4

It's a Shape at x: 4, y: 6

It's a Shape at x: 1, y: 3

It's a Shape at x: 4, y: 6

Addresses:

Node Address: 0x562ac60e82a0

Node Address: 0x562ac60e81d0

Node Address: 0x562ac60e8260

Node Address: 0x562ac60e8150

Node Address: 0x562ac60e80e0

Node Address: 0x562ac60e8190

Shape Address: 0x562ac60e8280

Shape Address: 0x562ac60e81b0

Shape Address: 0x562ac60e8240

Shape Address: 0x562ac60e8130

Shape Address: 0x562ac60e80c0

Shape Address: 0x562ac60e8170

 

 Grading Breakdown

Later methods depend on previous ones working correctly. For any scoring item, your program may not have valgrind errors.

    Points

Shape class

3

CanvasList testing (catching bugs in broken implementations; tests must pass for a correct solution to receive credit)

20

Default CanvasList constructor, empty, size, front

4

push_front, push_back

5

draw, print_addresses (manually graded)

2

CanvasList copy constructor

5

find, shape_at

5

insert_after

5

pop_front, pop_back

5

clear

5

CanvasList assignment operator

5

remove_at

5

remove_every_other

5

No valgrind errors or memory leaks (destructor + general hygiene); passes at least one CanvasList test.

15

Circle class

2

Rect class

2

RightTriangle class

2

                  Style

● 2 points: Code is styled consistently; for example, using the VSCode formatter. ○ (F1, type in “Format Document”)

 

 ● 1 point: Code is reasonably styled, but there are consistent significant stylistic issues (e.g. inconsistent indentation, line length > 120, spacing, etc.)

● 0 points: No credit (e.g. entire program is on one line)

Documentation + Commenting

● 3 points: Code is well-documented with descriptive variable names and comments, but not overly documented.

● 1.5 points: Code is partially documented, due to a lack of comments and/or poor naming; or code is overly documented with unnecessary comments.

● 0 points: Code has no documentation or appropriate names.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫CanvasList CS 251 Project 3
  • 下一篇:CS1083代做、代寫Java設(shè)計編程
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      九九精品在线观看视频| 日韩精品一区不卡| 黄色一级视频免费观看| 亚洲欧洲日韩综合| 无码人妻av一区二区三区波多野 | 夜夜爽久久精品91| 国产又大又黄又粗的视频| 91亚洲国产成人精品一区| 亚洲AV无码成人精品区东京热| 欧美日韩人妻精品一区在线| 精品国产一区在线| 国产一区二区三区四区在线| www.狠狠干| 国产精品999久久久| 国产av一区二区三区| 91麻豆国产在线| 97超碰在线免费观看| 亚洲欧美日韩色| 欧美特黄一级视频| 国产精品视频123| 91美女精品网站| 亚洲综合第一区| 99国产精品久久久久久久成人| 中文字幕人妻色偷偷久久| 小泽玛利亚一区二区三区视频| 亚洲av成人无码网天堂| 中文字幕乱视频| 91丝袜在线观看| 国产乱国产乱老熟300部视频| 国产成人麻豆免费观看| 国产区在线观看视频| 国产又粗又长视频| 女同毛片一区二区三区| 欧美性猛交xxxx乱| 无码aⅴ精品一区二区三区| 依人在线免费视频| 91午夜交换视频| 国产 欧美 精品| 九九视频在线观看| 天天爽夜夜爽夜夜爽精品| ,一级淫片a看免费| 久久久999久久久| 五月天精品视频| 国产sm调教视频| 欧美成人三级在线播放| 在线观看免费不卡av| jlzzjlzzjlzz亚洲人| 久久久精品一区二区涩爱| 日韩精品视频免费看| 一级黄色大片视频| 欧美另类视频在线观看| 亚洲一区二区三区日韩| 久草视频在线资源| 亚洲精品午夜在线观看| 精品人妻一区二区三区麻豆91| 亚欧洲精品在线视频| 国产日韩在线观看一区| 午夜精品免费看| 好吊色视频一区二区| 午夜影院免费体验区| 国产精品主播一区二区| 日日干夜夜操s8| www日韩在线| 日韩欧美综合视频| 国产精品第一页在线观看| 日韩精品电影一区二区三区| aaa国产视频| 日本午夜在线观看| 成人午夜视频一区二区播放| 日韩av免费网址| 国产免费一区二区三区四区五区| 日韩欧美亚洲一区二区三区| 丰满少妇乱子伦精品看片| 熟女人妻在线视频| 国产在线观看你懂的| 亚洲一区电影在线观看| 日日碰狠狠添天天爽| 国产乱人乱偷精品视频| 在线中文字幕网站| 日韩 国产 在线| 九九热国产在线| 国产91免费在线观看| 亚洲精品91在线| 天天视频天天爽| 日本中文字幕有码| 国产一区二区三区四区视频| www.蜜臀av.com| 亚洲欧美日韩偷拍| 天天综合网久久| 日本一区二区三区免费视频| 韩国中文字幕hd久久精品| 粉嫩aⅴ一区二区三区| 亚洲最大成人综合网| 午夜黄色福利视频| 色婷婷激情视频| 人妻精品无码一区二区 | 欧美男人天堂网| 精品二区在线观看| 国产一级二级毛片| 国产三级视频网站| 国产精品主播一区二区| 成年人在线免费看片| 91精品人妻一区二区三区| 亚洲色偷偷综合亚洲av伊人| 婷婷丁香激情网| 天堂www中文在线资源| 日日夜夜精品免费| 日韩精品在线不卡| 午夜成人鲁丝片午夜精品| 天天爽夜夜爽一区二区三区| 日韩一区二区视频在线| 日韩欧美激情视频| 深爱五月激情网| 在线观看岛国av| 中文字幕+乱码+中文| 中文字幕日韩一级| 99久久久久久久久久| 国产精品一级视频| 久久久久久久久毛片| 日韩精品一区二区亚洲av| 五月天婷婷综合网| 中文字幕日韩三级| 亚洲综合免费视频| 国产精品久久久久久久免费看| 精产国品一区二区三区| 欧美成人乱码一二三四区免费 | 国产一区二区麻豆| 久草视频免费播放| 人妻 日韩 欧美 综合 制服| 日韩乱码人妻无码中文字幕久久| 无码人妻精品一区二| 26uuu国产| 精品少妇久久久| 四虎国产成人精品免费一女五男| 中文无码精品一区二区三区| 亚洲精品在线视频播放| 国产精品久久久久久亚洲av| 欧美肉大捧一进一出免费视频| 亚洲AV无码一区二区三区性| aaa一区二区| 欧美成人一区二区三区高清| 亚洲成人天堂网| 国产精品午夜一区二区| 欧美成人精品欧美一级| 在线免费黄色av| 国产视频1区2区3区| 日本一本高清视频| 91尤物国产福利在线观看| 久久精品一二区| 中文字幕在线观看二区| 国产日韩欧美在线观看视频| 日本免费不卡视频| www.av网站| 天天色综合av| 国产亚洲精品久久久久久打不开| 亚洲av综合一区二区| 国内av在线播放| 亚洲精品久久久久久国| 久久久久成人精品无码| 91免费在线看片| 手机看片福利日韩| 好吊日免费视频| av高清一区二区| 亚洲 精品 综合 精品 自拍| 精品国产乱码久久久久久鸭王1 | 国产精品久久久久久久久久久久久久久久久久| 欧美专区第二页| 国产美女网站视频| 亚洲精品久久久中文字幕| 可以在线观看av的网站| www中文在线| 亚州精品国产精品乱码不99按摩| 国产又粗又猛视频| av成人免费网站| 亚洲av综合色区无码另类小说| 久国产精品视频| 国产精品99re| 91丝袜超薄交口足| 中文在线a天堂| 天天综合永久入口| 欧美日韩一级黄色片| 国产精品午夜福利| 91精品人妻一区二区三区蜜桃欧美| 日韩一区二区三区四区视频| 黄色av一区二区| 国产视频在线一区| 一级黄色在线视频| 中文字幕成人免费视频| 日韩va在线观看| 免费看日批视频| 久久av高潮av无码av喷吹| 国产精品呻吟久久| 国产精品毛片一区二区| 99视频只有精品| 91精品国产高潮对白| 91福利免费视频| 一级片久久久久| 成人av一区二区三区在线观看| 91香蕉视频免费看| 一级黄色片在线免费观看|