精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

代寫DTS101TC Introduction to Neural Networks Coursework

時間:2024-03-01  來源:  作者: 我要糾錯


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      亚洲三级在线视频| 亚洲va在线va天堂va偷拍| 国产偷人妻精品一区| 一区二区久久精品66国产精品| 亚洲av无码一区二区二三区| 91精品一区二区三区蜜桃| 日韩精品久久久久久免费| 第四色婷婷基地| 亚洲精品视频久久久| 亚洲成人黄色av| 日韩一级片中文字幕| 久久精品五月天| 国产精品尤物视频| av在线免费看片| 亚洲天堂男人网| 无码任你躁久久久久久久| 国产人妻人伦精品1国产丝袜| 99精品在线看| 亚洲三区在线观看无套内射| 午夜精品中文字幕| 天天干天天操天天做| 婷婷久久久久久| 伊人网伊人影院| 亚洲精品中文字幕乱码无线| 亚洲天堂国产视频| www.成人精品| 国产三级视频在线播放| 久久97人妻无码一区二区三区| 久久久久久蜜桃一区二区| 国产一级片视频| 久久精品无码人妻| 精品黑人一区二区三区| 久草视频精品在线| 人妻人人澡人人添人人爽| 色婷婷一区二区三区在线观看| 中文字幕在线播放日韩| 亚洲国产精品视频在线| 香蕉视频一区二区| 在线观看av网页| 亚洲三区在线观看无套内射| 91精品在线视频观看| 国产黄a三级三级| 久久久精品91| 午夜精品久久久久久久99热黄桃| 黄色一级视频免费看| 精品国产欧美日韩不卡在线观看| 日韩免费视频一区二区视频在线观看 | 欧美国产一级片| 午夜精品在线播放| 99草在线视频| 国产特级黄色片| 日本一本在线观看| 中文字幕在线视频一区二区三区| 精品无码人妻一区二区三区| 久久久久久久久久久影视| 欧美国产精品一二三| 亚洲国产999| 国产一级中文字幕| 亚洲成人av免费看| 国产精品久久久久久免费免熟| 中文字幕 国产精品| av五月天在线| 青青操国产视频| 中文字幕一区二区免费| 国产精品久久a| 无人码人妻一区二区三区免费| 美女网站色免费| 一区二区三区四区毛片| 97超碰在线免费观看| 欧美激情 亚洲| www.com黄色片| 日韩欧美亚洲国产| 日本福利片在线观看| 亚洲综合成人av| 欧美日韩一级黄色片| 中文字幕一区久久| 麻豆精品国产传媒| av资源免费观看| 亚洲 欧美 国产 另类| 好吊日在线视频| 999精品在线视频| 小早川怜子久久精品中文字幕| 色欲AV无码精品一区二区久久| 久久丫精品久久丫| 亚洲日本韩国在线| 欧美视频一区二区在线| 国产精品一区二区人人爽| 伊人久久久久久久久久久久| 蜜桃av乱码一区二区三区| 国产超碰人人模人人爽人人添| 国产欧美小视频| 91精品人妻一区二区三区四区| 91香蕉视频免费看| 日本天堂中文字幕| 精品国产视频一区二区三区| www.四虎在线| 亚洲一区二区人妻| 天天干天天色天天| 欧洲美熟女乱又伦| 欧美激情精品久久| 精品国产xxx| 狠狠躁夜夜躁人人爽视频| 国产乱淫a∨片免费视频| www.这里只有精品| 99热一区二区| 不卡中文字幕在线观看| 亚洲男人在线天堂| 亚洲精品永久视频| 91成年人网站| www.精品在线| 国产理论视频在线观看| 国产一二三四区在线| 国产一级二级av| 国产又黄又爽视频| 九九热99视频| 精品国产18久久久久久| 久久国产柳州莫菁门| 久久网中文字幕| 欧美精品久久久久久久久46p | 免费在线一区二区三区| 精品二区在线观看| 国产一级特黄a高潮片| 狠狠躁日日躁夜夜躁av| 国产一级做a爰片久久| 国产一区二区播放| 精品无码黑人又粗又大又长| 久久精品视频日本| 妺妺窝人体色www在线观看| 人妻妺妺窝人体色www聚色窝| 亚洲综合一区中| 亚洲综合色在线观看| 国产精品suv一区二区69| 国产偷人妻精品一区| 国产乱女淫av麻豆国产| 精品人妻无码一区二区性色| 欧美日韩人妻精品一区在线 | 亚洲一区二区三区黄色| 亚洲欧美日韩成人在线| 国产51自产区| 欧美国产精品一二三 | 久久精品国产亚洲av高清色欲 | 国产免费久久久久| 久草视频免费在线播放| 日韩精品视频免费看| 亚洲国产精品久久人人爱潘金莲| 国产原创视频在线| 日韩不卡一二三| 99这里有精品视频| 久久久久久91亚洲精品中文字幕| 99999精品| 狠狠躁夜夜躁人人爽天天高潮| 亚洲精品成av人片天堂无码| 99鲁鲁精品一区二区三区| 国产伦精品一区二区免费| 欧美成人三级在线播放| 亚洲黄色在线播放| 九九九视频在线观看| 在线免费一区二区| 国精产品一品二品国精品69xx| 亚洲一区二区乱码| 精品国产xxx| 五月天中文字幕在线| 国产成人综合欧美精品久久| 天堂在线观看视频| 国产无遮挡又黄又爽在线观看 | 日韩高清免费av| 亚洲欧洲日本精品| 九九热99视频| 亚州精品国产精品乱码不99按摩| 欧美人妻精品一区二区免费看| 国产精品成人免费观看| 五月六月丁香婷婷| 九热视频在线观看| 亚洲精品在线观看av| 国产又粗又猛又爽又| 中文人妻av久久人妻18| 嫩草影院一区二区| 国产伦精品一区二区三区视频女| www.com.av| 色婷婷在线影院| 激情久久综合网| 91麻豆精品久久毛片一级| 日韩av网站在线播放| 精品无码久久久久| 国产 日韩 欧美 综合| 日韩永久免费视频| 精品人妻av一区二区三区| 超碰在线免费97| 91福利在线观看视频| 亚洲精品久久久久久宅男 | 久久久久亚洲天堂| 中国a一片一级一片| 久久久久久久久久99| 国产精品手机在线观看| 91精品国产自产| 亚洲调教欧美在线| 一区不卡在线观看| 亚洲av无码一区二区三区人| 日韩一级中文字幕| 日韩免费av一区|