精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

代寫DTS101TC Introduction to Neural Networks Coursework

時間:2024-03-01  來源:  作者: 我要糾錯


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      国产精品乱码久久久久久| 欧美一区二区三级| 国产福利精品导航| 国产在线日韩欧美| 国产成人免费视频精品含羞草妖精| 青青国产91久久久久久| 日产精品久久久久久久性色| 日韩国产高清影视| 国产一区在线精品| 成人国产电影网| 欧美在线观看一区二区| 制服丝袜在线91| 日韩女优毛片在线| 国产精品午夜免费| 亚洲最色的网站| 卡一卡二国产精品| 国产成人99久久亚洲综合精品| 国产盗摄一区二区| 色婷婷精品大视频在线蜜桃视频| 在线观看视频91| 日韩女优毛片在线| 欧美国产日韩在线观看| 亚洲日本va午夜在线电影| 午夜国产精品一区| 国产成人在线视频免费播放| 91精彩视频在线| 精品国产伦一区二区三区观看方式 | 久久视频一区二区| 国产精品国产三级国产aⅴ中文| 伊人色综合久久天天人手人婷| 三级精品在线观看| 成人天堂资源www在线| 欧美亚洲动漫精品| 欧美国产一区二区在线观看| 午夜久久久久久久久| 国产激情一区二区三区| 欧美日韩在线播放三区| 国产婷婷精品av在线| 丝袜a∨在线一区二区三区不卡| 国产一区二区中文字幕| 精品视频999| 国产精品美女久久久久aⅴ国产馆| 亚洲va天堂va国产va久| 波多野结衣在线aⅴ中文字幕不卡| 51精品久久久久久久蜜臀| 亚洲国产精品成人综合| 久久国产精品99久久久久久老狼| 91麻豆国产香蕉久久精品| 日韩欧美专区在线| 日日夜夜精品免费视频| 日本精品裸体写真集在线观看 | 欧美性大战久久| 国产精品美女久久久久久久久久久| 亚洲不卡在线观看| 在线中文字幕一区| 亚洲欧洲国产日韩| proumb性欧美在线观看| 久久精品一区二区三区不卡牛牛| 日韩精品成人一区二区三区| 欧美性受xxxx| 亚洲一级二级三级在线免费观看| 国产69精品一区二区亚洲孕妇| 日韩精品一区二区三区中文精品 | 欧美变态凌虐bdsm| 日本午夜精品一区二区三区电影| 一本久道中文字幕精品亚洲嫩| 国产精品日产欧美久久久久| 国产在线视频一区二区三区| 日韩免费电影一区| 国内精品久久久久影院薰衣草 | 亚洲精品少妇30p| 99在线热播精品免费| 亚洲国产精华液网站w| 成人免费毛片高清视频| 国产精品视频观看| 91年精品国产| 亚洲自拍欧美精品| 在线成人av网站| 另类综合日韩欧美亚洲| 久久综合色鬼综合色| 国产麻豆精品theporn| 国产欧美日产一区| 99精品久久99久久久久| 一级日本不卡的影视| 欧美精品第一页| 精品亚洲成a人| 国产精品无圣光一区二区| av资源网一区| 午夜精品视频一区| 欧美精品一区二区不卡 | 一级日本不卡的影视| 91精品国产手机| 粉嫩欧美一区二区三区高清影视| 日韩欧美一区二区不卡| 国产专区欧美精品| 亚洲图片欧美激情| 91精品国产欧美一区二区18| 国产乱子伦视频一区二区三区 | 亚洲成人手机在线| 日韩一区二区三| av中文字幕亚洲| 日韩综合在线视频| 国产精品色眯眯| 欧美日本韩国一区| 国产精品中文字幕日韩精品| **网站欧美大片在线观看| 制服丝袜中文字幕亚洲| 丁香一区二区三区| 日本不卡高清视频| 亚洲视频一二区| 久久这里只有精品6| 在线观看国产一区二区| 国产伦精品一区二区三区在线观看| 中文字幕一区视频| 欧美精品一区二区三区蜜桃| 91久久精品一区二区二区| 国产精品69毛片高清亚洲| 亚洲电影一区二区三区| 亚洲国产精品黑人久久久 | 国产一区啦啦啦在线观看| 亚洲伦在线观看| 国产欧美日韩精品一区| 日韩欧美国产小视频| 欧美中文一区二区三区| av激情综合网| 国产成人福利片| 国模娜娜一区二区三区| 日本在线不卡视频| 亚洲一区二区三区四区在线 | 亚洲一区二区三区国产| 国产精品日产欧美久久久久| 精品久久久久久久久久久久久久久 | 日韩视频免费观看高清在线视频| 色哟哟在线观看一区二区三区| 精一区二区三区| 免费人成黄页网站在线一区二区| 亚洲一区视频在线观看视频| 亚洲欧洲av一区二区三区久久| 欧美激情一区二区三区在线| 精品国产乱码久久久久久夜甘婷婷| 欧美精品欧美精品系列| 欧美美女视频在线观看| 在线日韩一区二区| 欧美色精品天天在线观看视频| 91色porny| 日本韩国一区二区三区视频| 91麻豆国产香蕉久久精品| 91网站黄www| 91福利精品视频| 欧美偷拍一区二区| 欧美精品亚洲二区| 欧美一级欧美三级在线观看| 欧美一卡2卡3卡4卡| 欧美一区二区三区视频在线观看 | 94色蜜桃网一区二区三区| 99久久精品一区| 色噜噜狠狠一区二区三区果冻| 欧洲色大大久久| 在线电影国产精品| 欧美mv和日韩mv的网站| 久久久国产精品不卡| 日韩毛片一二三区| 亚洲福利视频一区二区| 麻豆成人免费电影| 国产乱人伦精品一区二区在线观看| 粉嫩一区二区三区性色av| 91色在线porny| 91麻豆精品国产91| 久久亚洲综合av| 亚洲人快播电影网| 青青草精品视频| 国产999精品久久久久久绿帽| 91美女在线观看| 欧美二区乱c少妇| 中文字幕免费不卡在线| 樱桃视频在线观看一区| 捆绑调教一区二区三区| 成人av电影免费观看| 9191精品国产综合久久久久久| 精品国产乱码久久久久久久久| 国产精品国产三级国产三级人妇 | 日韩和欧美一区二区三区| 国产一区二区三区免费看| 一本色道久久综合狠狠躁的推荐| 欧美一区二区精品在线| 中文字幕一区二区三区在线不卡| 亚洲成人自拍一区| 高清不卡在线观看| 欧美一卡二卡在线| 亚洲六月丁香色婷婷综合久久| 美美哒免费高清在线观看视频一区二区 | 亚洲私人影院在线观看| 久久精品国产亚洲一区二区三区| 成人免费视频国产在线观看| 欧美电影一区二区| 亚洲精品成人精品456| 国产精品影视在线观看| 欧美绝品在线观看成人午夜影视| 中文字幕精品—区二区四季| 日本美女一区二区|