精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

代寫 CSCI1440/2440 Homework 3

時(shí)間:2024-02-16  來源:  作者: 我要糾錯(cuò)


Homework 3: Myerson’s Lemma CSCI1440/2440

2024-02-08

Due Date: Tuesday, February 20, 2024. 11:59 PM.

We encourage you to work in groups of size two. Each group need only submit one solution. Your submission must be typeset using LATEX. Please submit via Gradescope with you and your partner’s Banner ID’s and which course you are taking.

For 1000-level credit, you need only solve the first three problems. For 2000-level credit, you should solve all four problems.

1 The All-Pay Auction

In an all-pay auction, the good is awarded to the highest bidder, but rather than only the winner paying, all bidders i must pay their bid: i.e., ui = vixi − pi.

Using the envelope theorem, derive (necessary conditions on) the symmetric equilibrium of a symmetric all-pay auction in which the bidders’ values are drawn i.i.d. from some bounded distribution F.

2 Allocation Rule Discontinuity

Fix a bidder i and a profile v−i. Myerson’s lemma tells us that incen-

tive compatibility and individual rationality imply two properties: 1. Allocation monotonicity: one’s allocation should not decrease as

 one’s value vi increases.

2. Myerson’s payment formula:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

xi(z,v−i)dz,

∀i ∈ [n],∀vi ∈ Ti,∀v−i ∈ T−i. (1)

In a second-price auction, the allocation rule is piecewise constant on any continuous interval. That is, bidder i’s allocation function is a Heaviside step function,1 with discontinuity at vi = b∗, where b∗ is the highest bid among all bidders other than i (i.e., b∗ = maxj̸=i vj):

1, if vi ≥ b∗ xi(vi,v−i) =

0, otherwise. Observe that ties are broken in favor of bidder i.

1 This is the canonical step function, whose range is [0, 1].

 

Given this allocation rule, the payment formula tells us what i should pay, should they be fortunate enough to win:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

?Z b∗

xi(z,v−i)dz

=vi(1)−

= vi(1)−(0+vi −b∗)

= b∗.

Alternatively, by integrating along the y-axis (i.e., R f (b) f −1 (y)dy),2

f (a)

bidder i’s payment can be expressed as follows: for ε ∈ (0, 1),

2 As the allocation function, call it f , is not invertible, but is weakly

increasing and right continuous, we define f(−1)(y) = inf{x | f(x) ≥ y}: e.g., f−1(1/2) = b∗.

Z vi ?dx (z,v )? pi(vi,v−i) = z i −i dz

Z ε Z 1−ε ?dxi(z,v−i)? = z(0)dz+ z

Z vi ? 0dz+ ∗ 1dz

0b

homework 3: myerson’s lemma 2

0 dz

0 ε dz 1−ε Z1−ε ∗

= bdy ε

∗ Z 1−ε =b dy ε

= b∗,

because the inverse of the allocation function is b∗, for all y ∈ (0, 1),

and limε→0 R 1−ε dy = 1. Intuitively, we can conclude the following ε

from this derivation: pi(vi, v−i) = b∗ · [jump in xi(·, v−i) at b∗]. Suppose that the allocation rule is piecewise constant on the con-

tinuous interval [0, vi], and discontinuous at points {z1, z2, . . . , zl} in this interval. That is, there are l points at which the allocation jumps from x(zj, v−i) to x(zj+1, v−i) (see Figure 1). Assuming this “jumpy” allocation rule is weakly increasing in value, prove that Myerson’s payment rule can be expressed as follows:

l

pi(vi, v−i) = ∑ zj · ?jump in xi(·, v−i) at zj? . (2) j=1

3 Sponsored Search Extension

In this problem, we generalize our model of sponsored search to include an additional quality parameter βi > 0 that characterizes each bidder i. With this additional parameter, we can view αj as the probability a user views an ad, and βi as the conditional probability that a user then clicks, given that they are already viewing the ad. Note that αj, the view probability, depends only on the slot j, not

Z 1

dz+ z(0)dz

 

xi(z3, v−i) xi(z2, v−i) xi(z1, v−i)

Figure 1: Allocation Rule. Shaded area represents payment.

z1z2 z3 Value, vi

on the advertiser occupying that slot, while βi, the conditional click probablity, explicitly depends on the advertiser i.

In this model, given bids v, bidder i’s utility is given by: ui(v) = βivix(v) − p(v)

So if bidder i is allocated slot j, their utility is: ui(v) = βiviαj − p(v)

Like click probabilities, you should assume qualities are public, not private, information.

1.

2.

4

optimization. The problem can be stated as follows:

There is a knapsack, which can hold a maximum weight of W ≥ 0. There are n items; each item i has weight wi ≤ W and value vi ≥ 0. The goal is to find a subset of items of maximal total value with total weight no more than W.

Written as an integer linear program,

n

max ∑ xivi

x i=1

Define total welfare for this model of sponsored search, and then describe an allocation rule that maximizes total welfare, given the bidders’ reports. Justify your answer.

Argue that your allocation rule is monotonic, and use Myerson’s characterization lemma to produce a payment rule that yields a DSIC mechanism for this sponsored search setting.

The Knapsack Auction

The knapsack problem is a famous NP-hard3 problem in combinatorial

3 There are no known polynomial-time solutions.

homework 3: myerson’s lemma 3

Allocation, xi(vi, v−i)

 

subject to

n

∑xiwi ≤W i=1

xi∈{0,1}, ∀i∈[n]

The key difference between optimization and mechanism design problems is that in mechanism design problems the constants (e.g., vi and wi) are not assumed to be known to the center / optimizer; on the contrary, they must be elicted, after which the optimization problem can then be solved as usual.

With this understanding in mind, we can frame the knapsack problem as a mechanism design problem as follows. Each bidder

has an item that they would like to put in the knapsack. Each item is characterized by two parameters—a public weight wi and a private value vi. An auction takes place, in which bidders report their values. The auctioneer then puts some of the items in the knapsack, and the bidders whose items are selected pay for this privilege. One real- world application of a knapsack auction is the selling of commercial snippets in a 5-minute ad break (e.g., during the Superbowl).4

Since the problem is NP-hard, we are unlikely to find a polynomial- time welfare-maximizing solution. Instead, we will produce a polynomial- time, DSIC mechanism that is a 2-approximation of the optimal wel-

fare. In particular, for any set possible set of values and weights, we

aim to always achieve at least 50% of the optimal welfare.

We propose the following greedy allocation scheme: Sort the bid- ders’ items in decreasing order by their ratios vi/wi, and then allocate items in that order until there is no room left in the knapsack.

1. Show that the greedy allocation scheme is not a 2-approximation by producing a counterexample where it fails to achieve 50% of the optimal welfare.

Alice proposes a small improvement to the greedy allocation scheme. Her improved allocation scheme compares the welfare achieved by the greedy allocation scheme to the welfare achieved

by simply putting the single item of highest value into the knapsack.5 She then uses whichever of the two approaches achieves greater wel- fare. It can be shown that this scheme yields a 2-approximation of optimal welfare. We will use it to create a mechanism that satisfies individual rationality and incentive compatibility.

2. Argue that Alice’s allocation scheme is monotone.

3. Now use Myerson’s payment formula to produce payments such that the resulting mechanism is DSIC and IR.

4 Here, the weight of a commercial is its time in seconds.

homework 3: myerson’s lemma 4

5 Note that weakly greater welfare could be achieved by greedily filling the knapsack with items in decreasing order of value until no more items

fit. We do not consider this scheme, because it is unnecessary to achieve

a 2-approximation; however, it is an obvious heuristic that anyone solving this problem in the real world
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫ACP Assignment 1 Specificaons
  • 下一篇:代做ECON 323 Econometric Analysis 2
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗(yàn)證碼平臺 理財(cái) WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      欧美日韩亚洲综合一区 | 亚洲欧美一区二区久久| 日韩久久精品一区| 精品国产91洋老外米糕| 欧美mv和日韩mv国产网站| 日韩欧美区一区二| 久久久精品日韩欧美| 国产欧美日韩在线视频| 国产精品久久久久aaaa| 亚洲视频一区二区在线| 亚洲国产精品一区二区www| 一区二区三区日韩欧美| 丝袜美腿高跟呻吟高潮一区| 日本aⅴ免费视频一区二区三区| 蜜桃久久精品一区二区| 国产成人av一区| av中文一区二区三区| 在线观看欧美日本| 日韩亚洲电影在线| 国产色综合久久| 亚洲欧美一区二区三区极速播放| 婷婷久久综合九色综合伊人色| 久久国内精品视频| av福利精品导航| 欧美日韩三级一区| 国产日产亚洲精品系列| 亚洲一区二区影院| 国产成人一区二区精品非洲| 色综合久久久久网| 欧美精品一区二区在线观看| 亚洲少妇30p| 老司机免费视频一区二区三区| www.亚洲精品| 日韩一区二区三区免费观看| 中文字幕在线一区二区三区| 麻豆精品一区二区综合av| 不卡视频一二三四| 日韩欧美国产综合| 亚洲自拍偷拍欧美| 狠狠色丁香婷婷综合久久片| 91久久国产最好的精华液| 久久久久国产精品麻豆ai换脸 | 亚洲三级电影网站| 久久电影国产免费久久电影| 91久久久免费一区二区| 国产午夜亚洲精品午夜鲁丝片| 亚洲18色成人| aaa亚洲精品| 国产欧美日韩麻豆91| 免费人成精品欧美精品| 欧美综合欧美视频| 亚洲男人的天堂av| 成人精品一区二区三区中文字幕| 日韩视频永久免费| 图片区日韩欧美亚洲| 99久精品国产| 欧美国产日本视频| 国产一区二区免费看| 日韩欧美一级在线播放| 亚洲国产精品自拍| 欧美色倩网站大全免费| 一区二区三区免费在线观看| caoporen国产精品视频| 国产精品护士白丝一区av| 国产麻豆视频一区| 久久视频一区二区| 韩国av一区二区三区在线观看| 欧美一级免费观看| 天堂午夜影视日韩欧美一区二区| 欧美主播一区二区三区| 一区二区三区在线播放| 91福利视频在线| 亚洲欧美视频在线观看视频| 色哟哟在线观看一区二区三区| 中文字幕日本不卡| 色哟哟一区二区在线观看| 亚洲色欲色欲www| 91黄视频在线| 亚洲va韩国va欧美va精品| 欧美丰满少妇xxxbbb| 麻豆精品在线播放| 久久亚洲影视婷婷| 成人毛片在线观看| 亚洲精品高清在线| 欧美日韩精品三区| 美女视频黄 久久| 亚洲精品一线二线三线| 成人性视频免费网站| 亚洲欧美日韩一区二区三区在线观看| 色视频成人在线观看免| 午夜电影网一区| 精品久久一区二区三区| 国产久卡久卡久卡久卡视频精品| 中文字幕av一区 二区| 91国产丝袜在线播放| 日本中文一区二区三区| 久久久久国产精品麻豆| av激情综合网| 日本一区中文字幕| 中文字幕av一区二区三区免费看| 日本精品一区二区三区高清| 美女尤物国产一区| ...av二区三区久久精品| 6080亚洲精品一区二区| 成人看片黄a免费看在线| 亚洲小少妇裸体bbw| 26uuu国产电影一区二区| 91亚洲资源网| 日本亚洲电影天堂| 中文字幕一区二区三| 91精品国产一区二区三区香蕉| 国产91对白在线观看九色| 午夜成人免费电影| 国产精品第一页第二页第三页| 717成人午夜免费福利电影| 丁香另类激情小说| 免费观看30秒视频久久| 一区在线观看视频| 久久久精品国产免大香伊| 欧美性一区二区| www.激情成人| 激情av综合网| 婷婷中文字幕综合| 亚洲人午夜精品天堂一二香蕉| 久久五月婷婷丁香社区| 欧美精品1区2区3区| 在线观看日韩av先锋影音电影院| 国产麻豆成人精品| 久久精品噜噜噜成人av农村| 尤物av一区二区| 国产精品久久毛片a| 久久精品一区蜜桃臀影院| 91精品国产一区二区三区 | 国产婷婷色一区二区三区四区| 在线播放一区二区三区| 色噜噜夜夜夜综合网| 成+人+亚洲+综合天堂| 国产乱子伦视频一区二区三区| 免费观看成人鲁鲁鲁鲁鲁视频| 亚洲国产精品影院| 一区二区三区丝袜| 一区二区视频在线| 亚洲欧美电影院| 亚洲日本乱码在线观看| 国产精品美女久久久久久久网站| 久久色成人在线| 欧美v国产在线一区二区三区| 欧美一二三区在线观看| 日韩一二在线观看| 日韩欧美色电影| 欧美xfplay| 久久久久97国产精华液好用吗| 精品国产91久久久久久久妲己| 日韩精品一区在线| 久久久美女毛片| 国产精品污网站| 亚洲日本护士毛茸茸| 亚洲高清免费视频| 午夜一区二区三区在线观看| 日本在线观看不卡视频| 久久国产福利国产秒拍| 国产毛片精品视频| 99久久精品国产网站| 欧洲一区在线观看| 91精品国产色综合久久| 久久久综合精品| 中文字幕亚洲成人| 亚洲国产精品久久不卡毛片| 蜜臀av性久久久久蜜臀aⅴ流畅| 精品夜夜嗨av一区二区三区| 高清不卡在线观看av| 欧美最新大片在线看| 91精品国产欧美一区二区成人| 久久嫩草精品久久久久| 国产精品久久福利| 午夜激情久久久| 国产最新精品精品你懂的| thepron国产精品| 欧美男男青年gay1069videost| 久久免费电影网| 亚洲综合激情网| 国产在线播精品第三| 日本韩国欧美三级| 久久网这里都是精品| 一区二区三区色| 国产乱对白刺激视频不卡| 欧美系列日韩一区| 国产婷婷一区二区| 日韩电影免费在线| 99久久精品久久久久久清纯| 日韩一级黄色大片| 亚洲欧美一区二区三区极速播放| 日韩影院精彩在线| 色婷婷综合激情| 久久久久久99精品| 欧美aa在线视频| 欧洲一区在线观看| 国产精品国产自产拍高清av| 久久成人免费日本黄色| 欧日韩精品视频|