精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

代寫 CSCI1440/2440 Homework 3

時間:2024-02-16  來源:  作者: 我要糾錯


Homework 3: Myerson’s Lemma CSCI1440/2440

2024-02-08

Due Date: Tuesday, February 20, 2024. 11:59 PM.

We encourage you to work in groups of size two. Each group need only submit one solution. Your submission must be typeset using LATEX. Please submit via Gradescope with you and your partner’s Banner ID’s and which course you are taking.

For 1000-level credit, you need only solve the first three problems. For 2000-level credit, you should solve all four problems.

1 The All-Pay Auction

In an all-pay auction, the good is awarded to the highest bidder, but rather than only the winner paying, all bidders i must pay their bid: i.e., ui = vixi − pi.

Using the envelope theorem, derive (necessary conditions on) the symmetric equilibrium of a symmetric all-pay auction in which the bidders’ values are drawn i.i.d. from some bounded distribution F.

2 Allocation Rule Discontinuity

Fix a bidder i and a profile v−i. Myerson’s lemma tells us that incen-

tive compatibility and individual rationality imply two properties: 1. Allocation monotonicity: one’s allocation should not decrease as

 one’s value vi increases.

2. Myerson’s payment formula:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

xi(z,v−i)dz,

∀i ∈ [n],∀vi ∈ Ti,∀v−i ∈ T−i. (1)

In a second-price auction, the allocation rule is piecewise constant on any continuous interval. That is, bidder i’s allocation function is a Heaviside step function,1 with discontinuity at vi = b∗, where b∗ is the highest bid among all bidders other than i (i.e., b∗ = maxj̸=i vj):

1, if vi ≥ b∗ xi(vi,v−i) =

0, otherwise. Observe that ties are broken in favor of bidder i.

1 This is the canonical step function, whose range is [0, 1].

 

Given this allocation rule, the payment formula tells us what i should pay, should they be fortunate enough to win:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

?Z b∗

xi(z,v−i)dz

=vi(1)−

= vi(1)−(0+vi −b∗)

= b∗.

Alternatively, by integrating along the y-axis (i.e., R f (b) f −1 (y)dy),2

f (a)

bidder i’s payment can be expressed as follows: for ε ∈ (0, 1),

2 As the allocation function, call it f , is not invertible, but is weakly

increasing and right continuous, we define f(−1)(y) = inf{x | f(x) ≥ y}: e.g., f−1(1/2) = b∗.

Z vi ?dx (z,v )? pi(vi,v−i) = z i −i dz

Z ε Z 1−ε ?dxi(z,v−i)? = z(0)dz+ z

Z vi ? 0dz+ ∗ 1dz

0b

homework 3: myerson’s lemma 2

0 dz

0 ε dz 1−ε Z1−ε ∗

= bdy ε

∗ Z 1−ε =b dy ε

= b∗,

because the inverse of the allocation function is b∗, for all y ∈ (0, 1),

and limε→0 R 1−ε dy = 1. Intuitively, we can conclude the following ε

from this derivation: pi(vi, v−i) = b∗ · [jump in xi(·, v−i) at b∗]. Suppose that the allocation rule is piecewise constant on the con-

tinuous interval [0, vi], and discontinuous at points {z1, z2, . . . , zl} in this interval. That is, there are l points at which the allocation jumps from x(zj, v−i) to x(zj+1, v−i) (see Figure 1). Assuming this “jumpy” allocation rule is weakly increasing in value, prove that Myerson’s payment rule can be expressed as follows:

l

pi(vi, v−i) = ∑ zj · ?jump in xi(·, v−i) at zj? . (2) j=1

3 Sponsored Search Extension

In this problem, we generalize our model of sponsored search to include an additional quality parameter βi > 0 that characterizes each bidder i. With this additional parameter, we can view αj as the probability a user views an ad, and βi as the conditional probability that a user then clicks, given that they are already viewing the ad. Note that αj, the view probability, depends only on the slot j, not

Z 1

dz+ z(0)dz

 

xi(z3, v−i) xi(z2, v−i) xi(z1, v−i)

Figure 1: Allocation Rule. Shaded area represents payment.

z1z2 z3 Value, vi

on the advertiser occupying that slot, while βi, the conditional click probablity, explicitly depends on the advertiser i.

In this model, given bids v, bidder i’s utility is given by: ui(v) = βivix(v) − p(v)

So if bidder i is allocated slot j, their utility is: ui(v) = βiviαj − p(v)

Like click probabilities, you should assume qualities are public, not private, information.

1.

2.

4

optimization. The problem can be stated as follows:

There is a knapsack, which can hold a maximum weight of W ≥ 0. There are n items; each item i has weight wi ≤ W and value vi ≥ 0. The goal is to find a subset of items of maximal total value with total weight no more than W.

Written as an integer linear program,

n

max ∑ xivi

x i=1

Define total welfare for this model of sponsored search, and then describe an allocation rule that maximizes total welfare, given the bidders’ reports. Justify your answer.

Argue that your allocation rule is monotonic, and use Myerson’s characterization lemma to produce a payment rule that yields a DSIC mechanism for this sponsored search setting.

The Knapsack Auction

The knapsack problem is a famous NP-hard3 problem in combinatorial

3 There are no known polynomial-time solutions.

homework 3: myerson’s lemma 3

Allocation, xi(vi, v−i)

 

subject to

n

∑xiwi ≤W i=1

xi∈{0,1}, ∀i∈[n]

The key difference between optimization and mechanism design problems is that in mechanism design problems the constants (e.g., vi and wi) are not assumed to be known to the center / optimizer; on the contrary, they must be elicted, after which the optimization problem can then be solved as usual.

With this understanding in mind, we can frame the knapsack problem as a mechanism design problem as follows. Each bidder

has an item that they would like to put in the knapsack. Each item is characterized by two parameters—a public weight wi and a private value vi. An auction takes place, in which bidders report their values. The auctioneer then puts some of the items in the knapsack, and the bidders whose items are selected pay for this privilege. One real- world application of a knapsack auction is the selling of commercial snippets in a 5-minute ad break (e.g., during the Superbowl).4

Since the problem is NP-hard, we are unlikely to find a polynomial- time welfare-maximizing solution. Instead, we will produce a polynomial- time, DSIC mechanism that is a 2-approximation of the optimal wel-

fare. In particular, for any set possible set of values and weights, we

aim to always achieve at least 50% of the optimal welfare.

We propose the following greedy allocation scheme: Sort the bid- ders’ items in decreasing order by their ratios vi/wi, and then allocate items in that order until there is no room left in the knapsack.

1. Show that the greedy allocation scheme is not a 2-approximation by producing a counterexample where it fails to achieve 50% of the optimal welfare.

Alice proposes a small improvement to the greedy allocation scheme. Her improved allocation scheme compares the welfare achieved by the greedy allocation scheme to the welfare achieved

by simply putting the single item of highest value into the knapsack.5 She then uses whichever of the two approaches achieves greater wel- fare. It can be shown that this scheme yields a 2-approximation of optimal welfare. We will use it to create a mechanism that satisfies individual rationality and incentive compatibility.

2. Argue that Alice’s allocation scheme is monotone.

3. Now use Myerson’s payment formula to produce payments such that the resulting mechanism is DSIC and IR.

4 Here, the weight of a commercial is its time in seconds.

homework 3: myerson’s lemma 4

5 Note that weakly greater welfare could be achieved by greedily filling the knapsack with items in decreasing order of value until no more items

fit. We do not consider this scheme, because it is unnecessary to achieve

a 2-approximation; however, it is an obvious heuristic that anyone solving this problem in the real world
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫ACP Assignment 1 Specificaons
  • 下一篇:代做ECON 323 Econometric Analysis 2
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      国产成人精品片| 亚洲色图 在线视频| 强乱中文字幕av一区乱码| 91成人国产综合久久精品| 精品少妇爆乳无码av无码专区 | 中文字幕人妻丝袜乱一区三区| 久久99爱视频| 国产女人18毛片水18精| www.蜜臀av.com| 91麻豆制片厂| 亚洲综合欧美在线| 一本色道久久综合亚洲| 宅男噜噜噜66国产免费观看| 人妻无码一区二区三区| 蜜臀av午夜精品久久| 国产一级片视频| 国产三级午夜理伦三级| 国产av精国产传媒| 国产69精品久久久久久久久久| 亚洲精品免费一区亚洲精品免费精品一区 | 色乱码一区二区三区在线| 精品人妻无码一区二区色欲产成人 | 亚洲熟女少妇一区二区| 一区二区三区免费在线观看视频| 天天色综合av| 中文字幕有码视频| 亚洲精品性视频| 亚洲国产视频一区二区三区| 亚洲成av人片在线观看无| 天天插天天干天天操| 亚洲成人av免费看| 中文字幕乱码视频| 亚洲午夜久久久久久久久红桃| 91av手机在线| 国产九九在线视频| 久久久999久久久| 日韩欧美成人一区二区三区| 五月激情婷婷网| 亚洲一区二区在线免费| 成人一级片免费看| 国产精品熟女一区二区不卡| 国精品人伦一区二区三区蜜桃| 久久免费手机视频| 天堂久久久久久| 中文字幕视频在线播放| 丰满人妻一区二区三区无码av| 国产又大又黄的视频| 强乱中文字幕av一区乱码| 亚洲av无码一区二区三区网址| 亚洲图片在线播放| 久久国产视频一区| 亚洲成人一二三区| 国产精品不卡av| 日韩一级在线视频| www.色就是色.com| 日本一区二区网站| 91日韩精品视频| 欧美第一页在线观看| 亚洲黄色片免费| 好吊视频在线观看| 色婷婷一区二区三区av免费看| 一本色道久久hezyo无码| 精品成人久久久| 亚洲第一成人av| 国内精品福利视频| 亚洲黄色小说在线观看| 精品无码av一区二区三区不卡| 在线免费播放av| 欧美69精品久久久久久不卡| 91麻豆精品国产91久久综合| 人妻无码中文字幕免费视频蜜桃| 一级片在线免费观看视频| 麻豆亚洲av成人无码久久精品| 91精品国自产在线| 日本午夜在线观看| 国产成人愉拍精品久久| 亚洲成a人无码| 久久久黄色大片| www.av在线.com| 午夜在线观看视频18| 久久久久久久久久久97| a级黄色片免费看| 在线观看中文字幕av| 久久激情免费视频| 国产美女免费网站| 91成人国产综合久久精品| 熟女av一区二区| 久久久久亚洲av成人片| 国产毛片在线视频| wwwwxxxx国产| 亚洲天堂一区在线观看| 一级做a爰片久久毛片| 欧美成人国产精品一区二区| 国产少妇在线观看| 国产5g成人5g天天爽| 99re国产在线| 97人妻天天摸天天爽天天| 中文字幕在线日亚洲9| 日韩精品电影一区二区| 毛片网站免费观看| 六月婷婷综合网| 久久久99精品| 精品人妻伦一二三区久| 国产在线不卡av| 国产在线成人精品午夜| 不卡中文字幕在线观看| av中文字幕在线免费观看| 99热99这里只有精品| 91蜜桃视频在线观看| 91看片在线播放| 88av在线视频| 成人免费看片98欧美| 国产 欧美 在线| 懂色av粉嫩av蜜臀av一区二区三区| 亚洲精品综合网| 999热精品视频| 国产福利在线导航| 国产一级做a爰片在线看免费| 国产精品二区一区二区aⅴ| 韩国三级丰满少妇高潮| 精品伦一区二区三区| 精品人妻一区二区三区含羞草| 国产又大又黑又粗免费视频| 国产在线视频卡一卡二| 久久国产柳州莫菁门| 日本毛片在线观看| 亚洲国产综合久久| 97人人模人人爽人人澡| 国产成人久久久久| 免费观看一区二区三区| 五月婷婷视频在线| 亚洲专区在线播放| 国产视频第二页| 欧美视频一二区| 亚洲欧美久久久久| 一级黄色在线视频| 加勒比av中文字幕| 欧美国产日韩在线视频| 香港三日本8a三级少妇三级99| 一本在线免费视频| 国产又粗又黄视频| 午夜一区在线观看| 国产 欧美 精品| 人妻一区二区三区免费| 亚洲国产精品18久久久久久| 国产又黄又大又粗的视频| 天堂中文视频在线| 超碰在线免费av| 欧美日韩在线观看成人| 亚洲天堂资源在线| 国产三级自拍视频| 欧美三级一区二区三区| 91狠狠综合久久久| 免费观看国产精品| 亚洲综合色在线观看| 久久精品www| 91久久久久国产一区二区| 免费一区二区三区在线观看| 一级久久久久久久| 六月丁香在线视频| av大全在线观看| 手机在线中文字幕| 国产又大又黄视频| 怡春院在线视频| 免费日韩一级片| 91麻豆制片厂| 少妇精品视频一区二区| 国产91av视频| 亚洲精品.www| 色综合色综合色综合色综合| 国产成人av免费在线观看| 中文字幕人妻一区二区三区在线视频| 国产一级免费大片| 999精品视频在线| 亚洲s码欧洲m码国产av| 久久久久久久亚洲| 国产精品第一页在线观看| 91超薄丝袜肉丝一区二区| 无码国精品一区二区免费蜜桃 | 伦理片一区二区| 国产露脸国语对白在线| 亚洲精品一区二区口爆| 日韩精品久久久久久久| 久久久精品福利| 波多野结衣一区二区在线 | 熟妇人妻av无码一区二区三区| 九九九九九国产| 国产福利短视频| av黄色在线播放| 一个色综合久久| 一级黄色大片视频| 伊人成年综合网| 图片区 小说区 区 亚洲五月| 青青青在线视频| 日韩网站在线播放| 日韩视频在线观看一区二区三区| 日本伦理一区二区三区| 日韩特黄一级片| 熟女高潮一区二区三区| 天天综合网在线|